2023-2024学年浙江省东阳市数学九年级第一学期期末学业水平测试试题含答案
展开
这是一份2023-2024学年浙江省东阳市数学九年级第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了是关于的一元一次方程的解,则等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,在⊙O中,分别将、沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是( )
A.8B.C.32D.
2.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于( )
A.(2+2)cmB.(2﹣2)cmC.(+1)cmD.(﹣1)cm
3.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是( )
A.B.C.D.
4.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为( )
A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)
5.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有( )个
A.10B.15C.20D.25
6.是关于的一元一次方程的解,则( )
A.B.C.4D.
7.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为( )
A.x1=﹣3,x2=﹣1B.x1=1,x2=3
C.x1=﹣1,x2=3D.x1=﹣3,x2=1
8.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
9.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
10.用配方法解方程时,原方程可变形为( )
A.B.C.D.
11.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
A.2B.3C.4D.5
12.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网B.球会过球网但不会出界
C.球会过球网并会出界D.无法确定
二、填空题(每题4分,共24分)
13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.
14.如图把沿边平移到的位置,它们的重叠部分(即图中阴影部分)的面积是面积的三分之一,若,则点平移的距离是__________
15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.
16.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度(单位:)与水流喷出时间(单位:)之间的关系式为,那么水流从喷出至回落到水池所需要的时间是__________.
17.计算:=_____________
18.在△ABC中,∠C=90°,BC=2,,则边AC的长是 .
三、解答题(共78分)
19.(8分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.
20.(8分)如果是关于x的一元二次方程;
(1)求m的值;
(2)判断此一元二次方程的根的情况,如果有实数根则求出根,如果没有说明理由则可.
21.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
22.(10分)在△ABC中, AB=12,AC=9,点D、E分别在边AB、AC上,且△ADE与△ABC与相似,如果AE=6,那么线段AD的长是______.
23.(10分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.
(1)求证:△ABH是等腰三角形;
(2)求证:直线PC是⊙O的切线;
(3)若AB=2,AD=,求⊙O的半径.
24.(10分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.
(1)若a=-1.
①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;
②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;
(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.
25.(12分)在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴;
(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;
(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.
26.(12分)问题背景:如图1设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.
简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=2,则∠BPC= °.
(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC= .
拓展廷伸:(3)如图4,∠ABC=∠ADC=90°,AB=BC.求证:BD=AD+DC.
(4)若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、B
4、A
5、C
6、A
7、C
8、C
9、A
10、B
11、B
12、C
二、填空题(每题4分,共24分)
13、5.
14、
15、1.
16、1
17、-1
18、.
三、解答题(共78分)
19、1.
20、(1)m=1;(2)有两个不相等的实数根,,.
21、(1)证明见解析;(2)MD长为1.
22、8或;
23、 (1)见解析;(2)见解析;(3) .
24、 (1) ①n=1;② (2)
25、 (1)x=2;(2);(3)或.
26、(1)135;(2)13;(3)见解析;(4)
相关试卷
这是一份浙江省东阳市2023-2024学年数学九年级第一学期期末达标检测试题含答案,共6页。试卷主要包含了已知二次函数的图象等内容,欢迎下载使用。
这是一份浙江省仙居县2023-2024学年数学九年级第一学期期末学业水平测试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列判断正确的是,二次函数y=3,如图,在中,,,则的值是等内容,欢迎下载使用。
这是一份浙江省海曙区五校联考2023-2024学年数学九年级第一学期期末学业水平测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。