- 考点25 两个计数原理、排列组合12种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册) 试卷 0 次下载
- 考点26 二项式定理9种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册) 试卷 0 次下载
- 考点28 离散型随机变量及其分布列、数字特征6种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册) 试卷 0 次下载
- 考点29 二项分布、超几何分布和正态分布10种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册) 试卷 0 次下载
- 考点30 相关性、回归分析及独立性检验10种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册) 试卷 0 次下载
考点27 条件概率和全概率公式4种常见考法归类-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第三册)
展开1、条件概率
①定义:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=eq \f(P(AB),P(A))为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.
②概率的乘法公式:由条件概率的定义,对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B|A).
2、条件概率的性质:设P(A)>0,则
①P(Ω|A)=1;
②如果B和C是两个互斥事件,则P((B∪C)|A)=P(B|A)+P(C|A);
③设B和B互为对立事件,则P(B|A)=1-P(B|A).
3、全概率公式:一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq \(∑,\s\up6(n),\s\d4(i=1))P(Ai)·P(B|Ai). 我们称这个公式为全概率公式.
注意:(1)全概率公式是用来计算一个复杂事件的概率,它需要将复杂事件分解成若干简单事件的概率计算,即运用了“化整为零”的思想处理问题.
(2)什么样的问题适用于这个公式?所研究的事件试验前提或前一步骤试验有多种可能,在这多种可能中均有所研究的事件发生,这时要求所研究事件的概率就可用全概率公式.
4、贝叶斯公式:(1)一般地,当且时,有
(2)定理若样本空间中的事件满足:
①任意两个事件均互斥,即,,;
②;
③,.
则对中的任意概率非零的事件,都有,
且
注意:(1)在理论研究和实际中还会遇到一类问题,这就是需要根据试验发生的结果寻找原因,看看导致这一试验结果的各种可能的原因中哪个起主要作用,解决这类问题的方法就是使用贝叶斯公式.贝叶斯公式的意义是导致事件发生的各种原因可能性的大小,称之为后验概率.
(2)贝叶斯公式充分体现了,,,,,之间的转关系,即,,之间的内在联系.
5、解决条件概率问题的步骤:第一步,判断是否为条件概率,若题目中出现“在……条件下”“在……前提下”等字眼,一般为条件概率;题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率. 若为条件概率,则进行第二步,计算概率,这里有两种思路. 思路一:缩减样本空间法计算条件概率. 如求P(A|B),可分别求出事件B,AB包含的基本事件的个数,再利用公式P(A|B)=eq \f(n(AB),n(B))计算;思路二:直接利用条件概率的计算公式计算条件概率,即先分别计算出P(AB),P(B),再利用公式P(A|B)=eq \f(P(AB),P(B))计算. 当直接求事件A发生的概率不好求时,可以采用化整为零的方式,即把事件A分解,然后借助全概率公式间接求出事件A发生的概率.
考点一 条件概率的计算
考点二 条件概率的性质及概率乘法公式应用
考点四 全概率公式的应用
考点五 贝叶斯公式的应用
考点一 条件概率的计算
1.(2023春·山西太原·高二统考期中)根据历年气象统计资料,某地4月份的任一天刮东风的概率为,下雨的概率为,既刮东风又下雨的概率为.则4月8日这一天,在刮东风的条件下下雨的概率为( )
A.B.C.D.
2.(2023春·安徽马鞍山·高二马鞍山二中校考期中)某校开展了课后延时服务,要求张老师在每个星期的周一至周五选两天参加课后延时服务,则张老师在周二参加课后延时服务的条件下,周三也参加课后延时服务的概率为( )
A.B.C.D.
3.(2023·贵州·校联考模拟预测)某地病毒暴发,全省支援,需要从我市某医院某科室的4名男医生(含一名主任医师)、5名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,则在有一名主任医师被选派的条件下,两名主任医师都被选派的概率为( )
A.B.C.D.
4.(2023春·江苏南京·高二南京航空航天大学附属高级中学校考期中)2021年11月27日奥密克戎毒株输入我国香港,某医院委派甲、乙、丙、丁四名医生前往三个小区做好防疫工作,每个小区至少委派一名医生,在甲派往小区的条件下,乙派往小区的概率为____.
5.(2023春·广东深圳·高二校考期中)花店还剩七束花,其中三束郁金香,两束白玫瑰,两束康乃馨,李明随机选了两束,已知李明选到的两束花是同一种花,则这两束花都是郁金香的概率为________.
6.(2023春·山西·高二统考期中)标有数字的六张卡片,从中有放回地随机抽取两次,每次抽取一张,表示事件“第一次取出的数字是3”,表示事件“第二次取出的数字是2”,表示事件“两次取出的数字之和是6”,表示事件“两次取出的数字之和是7”,则( )
A.B.
C.D.
7.【多选】(2023春·江苏苏州·高二校联考期中)甲、乙两盒中各放有除颜色外其余均相同的若干个球,其中甲盒中有4个红球和2个白球,乙盒中有2个红球和3个白球,现从甲盒中随机取出1球放入乙盒,再从乙盒中随机取出1球.记“从甲盒中取出的球是红球”为事件A,“从甲盒中取出的球是白球”为事件B,“从乙盒中取出的球是红球”为事件C,则( )
A.A与B互斥B.A与C独立C.D.
考点二 条件概率的性质及概率乘法公式应用
8.(2023春·陕西西安·高二校联考阶段练习)下列说法正确的是( )
A.B.是可能的
C.D.
9.(2023春·上海浦东新·高二上海市洋泾中学校考期中)已知, ,则__________.
10.(2023·辽宁丹东·统考一模)已知,,,那么____________.
11.(2023春·江苏南京·高二南京师范大学附属中学江宁分校校考期中)已知随机事件A,B,,,,则________.
12.(2023秋·江西吉安·高二永丰县永丰中学校考期末)记为事件的对立事件,且,则___________.
13.(2023春·山西太原·高二太原师范学院附属中学校考阶段练习)条件概率只是缩小了样本空间,因此条件概率同样具有概率的性质.故试着证明条件概率的性质(1)和(2).设,则
(1);
(2)如果B和C是两个互斥事件,则;
考点三 全概率公式的应用
14.(2023秋·山东德州·高二统考期末)已知P(B)=0.3,,,则=( )
A.B.C.D.
15.(2023秋·广东·高三统考期末)某工厂有甲、乙、丙三条生产线同时生产同一产品,这三条生产线生产产品的次品率分别为,假设这三条生产线产品产量的比为,现从这三条生产线上共任意选取100件产品,则次品数的数学期望为___________.
16.(2023春·广东深圳·高二校考期中)10支步枪中有6支已经校准过,4支未校准,一名射击运动员用校准过的枪射击时,中靶的概率为,用未校准的枪射击时,中靶的概率为,现从10支中任取一支射击,则中靶的概率为( )
A.B.C.D.
17.(2023春·江苏南京·高二南京外国语学校校考期中)某工厂有甲、乙、丙三条生产线同时生产同一产品,这三条生产线生产产品的次品率分别为,假设这三条生产线产品产量的比为,现从这三条生产线上随机任意选取100件产品,则次品数的数学期望为__________.
18.(2023春·山东烟台·高二山东省招远第一中学校考期中)在数字通信中,信号是由数字0和1组成.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05,若发送信号0和1是等可能的,则接受信号为1的概率为( )
A.0.475B.0.525C.0.425D.0.575
19.(2023春·江苏无锡·高二江苏省太湖高级中学校考期中)甲罐中有4个红球,4个白球和2个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则的值为________.
20.(2023春·山西·高二统考期中)某车间使用甲、乙、丙三台车床加工同一型号的零件,车床甲和乙加工此型号零件的优质品率分别为,且甲和乙加工的零件数分别占总数的.如果将三台车床加工出的零件全部混放在一起,并随机抽出一件,得到优质品的概率是0.54,则车床丙加工此型号零件的优质品率是( )
A.B.C.D.
21.【多选】(2023秋·辽宁锦州·高三统考期末)甲箱中有4个红球,2个白球和3个黑球,乙箱中有3个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以,和表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱取出的球是红球的事件,则下列结论正确的是( )
A.事件与事件()相互独立
B.
C.
D.
22.(2023秋·山东日照·高二统考期末)某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.
(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;
(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.
考点四 贝叶斯公式的应用
23.(2023秋·山西太原·高三统考期末)在临床上,经常用某种试验来诊断试验者是否患有某种癌症,设“试验结果为阳性”,“试验者患有此癌症”,据临床统计显示,.已知某地人群中患有此种癌症的概率为,现从该人群中随机抽在了1人,其试验结果是阳性,则此人患有此种癌症的概率为_____________.
24.(2023秋·江西上饶·高二统考期末)某一地区的患有癌症的人占0.004,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.02.现抽查了一个人,试验反应是阳性,则此人是癌症患者的概率约为( )
A.0.16B.0.32C.0.42D.0.84
25.(2023秋·广东深圳·高三统考期末)某批产品来自,两条生产线,生产线占,次品率为4%;生产线占,次品率为,现随机抽取一件进行检测,若抽到的是次品,则它来自生产线的概率是( )
A.B.C.D.
26.(2023春·湖南长沙·高三长沙麓山国际实验学校校考阶段练习)随着城市经济的发展,早高峰问题越发严重,上班族需要选择合理的出行方式.某公司员工小明上班出行方式由三种,某天早上他选择自驾,坐公交车,骑共享单车的概率分别为,而他自驾,坐公交车,骑共享单车迟到的概率分别为,结果这一天他迟到了,在此条件下,他自驾去上班的概率是__________.
27.【多选】(2023秋·广西桂林·高二统考期末)英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件、存在如下关系:.某高校有甲、乙两家餐厅,王同学第一天去甲、乙两家餐厅就餐的概率分别为0.4和0.6.如果他第一天去甲餐厅,那么第二天去甲餐厅的概率为0.6;如果第一天去乙餐厅,那么第二天去甲餐厅的概率为0.5,则王同学( )
A.第二天去甲餐厅的概率为0.54
B.第二天去乙餐厅的概率为0.44
C.第二天去了甲餐厅,则第一天去乙餐厅的概率为
D.第二天去了乙餐厅,则第一天去甲餐厅的概率为
28.(2023春·黑龙江哈尔滨·高二哈尔滨德强学校校考阶段练习)三部机器生产同样的零件,其中机器甲生产的占,机器乙生产的占,机器丙生产的占.已知机器甲、乙、丙生产的零件分别有、和不合格,现从总产品中随机地抽取一个零件,求:
(1)它是不合格品的概率;
(2)若它是不合格品,则它是由哪一部机器生产出来的可能性大.(计算说明理由)
专题7.1 条件概率与全概率公式-2023-2024学年高二数学讲练测(人教A版选择性必修第三册): 这是一份专题7.1 条件概率与全概率公式-2023-2024学年高二数学讲练测(人教A版选择性必修第三册),文件包含专题71条件概率与全概率公式举一反三人教A版选择性必修第三册原卷版docx、专题71条件概率与全概率公式举一反三人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
通关练34 条件概率和全概率公式-2023-2024学年高二数学期末导与练(人教A版选择性必修第三册): 这是一份通关练34 条件概率和全概率公式-2023-2024学年高二数学期末导与练(人教A版选择性必修第三册),文件包含通关练34条件概率和全概率公式-高二数学题型归纳与解题策略人教A版选择性必修第三册原卷版docx、通关练34条件概率和全概率公式-高二数学题型归纳与解题策略人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
通关练34 条件概率和全概率公式-2023-2024学年高二数学专题高分突破(人教A版选择性必修第三册): 这是一份通关练34 条件概率和全概率公式-2023-2024学年高二数学专题高分突破(人教A版选择性必修第三册),文件包含通关练34条件概率和全概率公式-高二数学题型归纳与解题策略人教A版选择性必修第三册原卷版docx、通关练34条件概率和全概率公式-高二数学题型归纳与解题策略人教A版选择性必修第三册解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。