终身会员
搜索
    上传资料 赚现金

    通关练29 利用导数研究函数的图象及性质-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(原卷版).docx
    • 解析
      通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(解析版).docx
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(原卷版)第1页
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(原卷版)第2页
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(原卷版)第3页
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(解析版)第1页
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(解析版)第2页
    通关练29 利用导数研究函数的图象及性质-高二数学题型归纳与解题策略(人教A版选择性必修第二册)(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    通关练29 利用导数研究函数的图象及性质-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册)

    展开

    这是一份通关练29 利用导数研究函数的图象及性质-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册),文件包含通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册原卷版docx、通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。


    一、单选题
    1.(2023春·江苏镇江·高二扬中市第二高级中学校考开学考试)函数的图象大致为( )
    A.B.
    C.D.
    【答案】A
    【分析】利用导数求得的单调区间,结合函数值确定正确选项.
    【详解】由,可得函数的减区间为,增区间为,
    当时,,可得选项为A.
    故选:A
    2.(2023秋·江苏常州·高二江苏省奔牛高级中学校考期末)函数 的图象大致是( )
    A.B.
    C.D.
    【答案】C
    【分析】根据函数符号,单调性即可判断.
    【详解】对于 ,当 时, ,故A,B错误;
    ,显然在定义域内 ,
    即在 和 都是增函数,C正确,D错误;
    故选:D.
    3.(2023秋·江苏常州·高二常州市第一中学校考期末)函数的部分图象大致为( )
    A.B.
    C.D.
    【答案】C
    【分析】先求解的定义域并判断奇偶性,然后根据的值以及在上的单调性选择合适图象.
    【详解】定义域为,,
    则,为奇函数,图象关于原点对称,故排除B;
    ,故排除A;
    ∵,当时,可得,当时,,单调递增,故排除D.
    故选:C.
    4.(2023·江苏·高二专题练习)函数的大致图象是( )
    A.B.C.D.
    【答案】A
    【分析】利用导数分析函数的单调性与极值,进而可得出函数的图象.
    【详解】解:因为,所以,
    令,则,
    令,解得,且时,,时,,
    所以时,单调递减,时,单调递增,且,,,
    所以在上存在,使得,又,令,则有2个实数根,
    所以当或时,,当时,,
    所以函数在和上是增函数,在上是减函数,且,,结合选项得出A选项符合函数的大致图象.
    故选:A.
    【点睛】本题主要考查函数图象的识别和判断,求函数的导数,利用导数研究函数的单调性与极值是解决本题的关键.难度中等.
    5.(2023春·江西·高二校联考开学考试)函数的图象大致为( )
    A.B.
    C.D.
    【答案】A
    【分析】先得到当时,,排除BD,再求导,得到函数单调性,结合,排除C.
    【详解】,当时,,
    故当时,恒成立,排除BD,

    令得:,此时单调递增,令得:,
    此时单调递减,其中,排除C,
    故当时,取得最大值,故A正确.
    故选:A
    6.(2022春·四川绵阳·高二校考期中)已知函数(是函数的导函数)的图象如图所示,则的大致图象可能是( )
    A.B.
    C.D.
    【答案】C
    【分析】设函数的图象在轴上最左边的一个零点为,根据函数的图象得到的正负,即得解.
    【详解】解:设函数的图象在轴上最左边的一个零点为,且.
    当时,在上单调递增;
    当时,在上单调递减.
    故选:C
    7.(2022春·北京·高二北京师大附中校考期中)已知定义在上的函数的图象如图,则不等式的解集为( )
    A.B.C.D.
    【答案】B
    【分析】根据函数图象得到单调性,从而确定不等式的解集.
    【详解】由图象可知:在,上单调递增,在上单调递减,
    故等式的解集为.
    故选:B
    8.(2022秋·陕西延安·高二校考阶段练习)已知,为的导函数,则的图象大致是( )
    A.B.C.D.
    【答案】A
    【分析】首先对求导,再利用奇偶性排除B、D,然后通过取特殊值排除C即可.
    【详解】因为,则,
    又因为,所以为奇函数,由此可排除B、D;
    ,说明的图像在区间上函数值存在负数,由此C不满足,故A正确.
    故选:A
    9.(2022·江苏·高二专题练习)已知函数在定义域内可导,其图象如图所示.记的导函数为,则不等式的解集为( )
    A.B.
    C.D.
    【答案】A
    【分析】根据原函数图象与导函数的关系,即可得到结果.
    【详解】对于不等式对,
    当时,,则结合图象,知原不等式的解集为;
    当时,,则结合图象,知原不等式的解集为.
    综上,原不等式的解集为.
    故选:A
    10.(2022春·山东泰安·高二宁阳县第四中学校考阶段练习)为的导函数,的图象如图所示,则函数的图象可能为( )
    A.B.
    C.D.
    【答案】B
    【分析】根据导数的正负决定函数的增减,以及导数的几何意义即可得出正确选项.
    【详解】导数正负决定函数的增减,
    根据导数先正,后负,后正,
    所以函数图像先增后减再增,应从B,C中选取,
    再根据导数的几何意义是切线斜率,
    所以当是很大的正数的时候导数越来越大,即切线斜率越来越大,
    所以应选B,不选C.
    故选:B.
    11.(2022春·陕西榆林·高二校考阶段练习)已知函数的图象如图所示(其中是函数的导函数),则下面四个图象中,的图象大致是( )
    A.B.
    C.D.
    【答案】C
    【分析】先利用函数的图象求得函数的单调区间,进而得到正确选项.
    【详解】由题给函数的图象,可得
    当时,,则,则单调递增;
    当时,,则,则单调递减;
    当时,,则,则单调递减;
    当时,,则,则单调递增;
    则单调递增区间为,;单调递减区间为
    故仅选项C符合要求.
    故选:C
    12.(2022秋·天津河西·高二校考期末)设函数的图像如图所示,则导函数的图像可能为( )
    A.B.
    C.D.
    【答案】C
    【分析】由原函数的单调性是由导函数的函数值的正负,单调递增可得,单调递减可得,数形结合即可得解.
    【详解】解:由的图像知:当时,单调递减,,
    当时,单调递增,,
    当时,单调递减,,
    由选项各图知:选项C符合题意,
    故选:C.
    13.(2022·高二单元测试)定义在区间上的函数的导函数的图象如图所示,则下列结论正确的是( )
    A.函数在区间上单调递增
    B.函数在区间上单调递减
    C.函数在处取得极大值
    D.函数在处取得极大值
    【答案】A
    【分析】根据函数的单调性和导数值的正负的关系,可判断A、B;根据函数的极值点和导数的关系可判断C、D的结论.
    【详解】在区间上,故函数在区间上单调递增,故A正确;
    在区间上,故函数在区间上单调递增,故B错误;
    当时,,可知函数在上单调递增,故不是函数的极值点,故C错误;
    当时,,单调递减;当时,,单调递增,故函数在处取得极小值,故D错误,
    故选:A.
    14.(2022春·海南·高二校考期中)如图是函数 的导函数的图象,则下列结论正确的是( )
    A.在区间内是增函数
    B.在区间内是减函数
    C.在区间内是增函数
    D.在时,取极小值
    【答案】C
    【分析】根据图象确定的正负,即可得函数的单调性.
    【详解】由图象可知:当,时,,此时单调递减,
    当和时, 此时单调递增,
    对于A,在单调递减,单调递增,故A错误,
    对于B,在单调递增,单调递减,故B错误,
    对于C,在单调递增,故C正确,
    对于D,时,取极大值,故D错误,
    故选:C
    15.(2022春·重庆·高二校联考期中)如图所示是函数的图象,其中为的导函数,则下列大小关系正确的是( )
    A.B.
    C.D.
    【答案】A
    【分析】利用函数图象确定函数的单调性,由此确定的值,比较其大小.
    【详解】由已知可得:
    函数在上单调递增,在上单调递减,在上单调递增,在上单调递减,函数在时取极小值,
    所以,
    所以,
    故选:A.
    16.(2022·江苏·高二期末)已知函数,若与的图像上分别存在点,使得关于直线对称,则实数的取值范围是( )
    A.B.
    C.D.
    【答案】D
    【分析】由题设令,根据存在性将问题转化为在上有解,参变分离后可求实数的取值范围.
    【详解】因为与的图像上分别存在点,使得关于直线对称,


    即在上有解,
    即在上有解
    即在上有解,
    设,,
    则,
    当时,,故在为增函数,
    当时,,故在为减函数,
    而,
    故在上的值域为,

    即,
    故选:D.
    17.(2022·高二单元测试)已知不等式恰有2个整数解,求实数k的取值范围( )
    A.B.C.D.
    【答案】D
    【分析】原不等式等价于,设,,然后转化为函数的交点结合图象可求.
    【详解】原不等式等价于,设,,所以,得.当时,,
    所以在上单调递增,当时,,所以在上单调递减,当时,取极大值.
    又,且时,,因此与的图象如下,直线恒过点.
    当时,显然不满足条件;当时,只需要满足,即,解得.
    故选:D.
    18.(2022春·上海奉贤·高二上海市奉贤中学校考期末)设是函数的导函数,的图象如图所示,则的解集是( )
    A.B.
    C.D.
    【答案】C
    【分析】根据函数图象判断函数值的正负,根据函数的单调性判断导数值的正负,即可求得答案.
    【详解】由函数图象可知当时,,则;
    当时,,则;
    当时,,则;
    当时,,则;
    当时,,则;
    当时,,则;
    故的解集是,
    故选:C.
    19.(2022春·广西百色·高二统考期末)设函数,若函数有两个零点,则实数的取值范围是( )
    A.B.C.D.
    【答案】D
    【分析】先求导得出的单调性,进而画出的图象,将题设转化为函数与有两个交点,结合图象求出实数的取值范围即可.
    【详解】当时,函数单调递增;当时,,则时,,
    所以当时,,时,,故当时,在上单调递减,在上单调递增,
    所以在处取极小值,极小值为,作出函数的图象如图:
    因为函数有两个零点,所以函数与有两个交点,所以当时
    函数与有两个交点,所以实数的取值范围为.
    故选:D.
    二、多选题
    20.(2022春·辽宁葫芦岛·高二校联考阶段练习)已知函数的图像如图所示,是的导函数,则( )
    A.B.C.D.
    【答案】BC
    【分析】由函数的图像得到函数的单调性,根据单调性得到导函数的符号,从而可得答案.
    【详解】由函数的图像可知,的单调递增区间为和,单调递减区间为,
    所以当或时,;当时,,
    所以,,,.
    故选:BC .
    21.(2022春·广东中山·高二中山纪念中学校考阶段练习)已知定义在上的奇函数的部分图象如图所示,是的导函数,则下列结论中正确的是( )
    A.B.
    C.D.方程无实数解
    【答案】BC
    【分析】先证明为偶函数,再根据图象可判断,,从而可判断ABC的正误,根据函数有极值点可判断D的正误.
    【详解】因为为上的奇函数,故,
    所以,即,所以为偶函数,
    又,由图可得,故,故A错误,
    而,故B正确.
    ,由图可得,
    故,所以C正确.
    由图可得在上存在极值点,故在上有解,故D错误.
    故选:BC
    22.(2022春·福建漳州·高二校考阶段练习)设函数在上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是( )
    A.函数在上递减,在上递减
    B.函数在上递增,在上递增
    C.函数有极大值和极小值
    D.函数有极大值和极小值
    【答案】BD
    【分析】结合函数图象,对分区间讨论与大小关系,从而推导出在区间上的单调性即可;
    【详解】解:由图可知:当时,,故在上单调递增;
    当时,,故在上单调递减;
    当时,,故在上单调递减;
    当时,,故在上单调递增;
    故函数在时取得极大值,在时取得极小值,
    即函数有极大值和极小值;
    故选:BD.
    23.(2022春·湖南衡阳·高二统考期末)已知函数的导函数的图象如图所示,则( )
    A.f(x)在上单调递增
    B.f(x)有4个极值点
    C.f(x)在上单调递减
    D.
    【答案】AC
    【分析】根据给定导函数图象,确定导数值大于0、小于0的区间即可分析判断作答.
    【详解】观察图象知,当时,,当时,,
    函数在上单调递增,而,则在上单调递增,A正确;
    在上单调递减,而,在上单调递减,C正确;
    函数在处都取得极小值,在0处取得极大值,有3个极值点,B不正确;
    因当时,,当且仅当时取“=”,即在上单调递减,
    而,则有,D不正确.
    故选:AC
    24.(2022·高二课时练习)下列图像中,可以作为函数的导函数的图像的是( )
    A.B.
    C.D.
    【答案】AC
    【分析】为二次函数,根据参数确定可能的图像即可
    【详解】由题意得,则的图像开口向上.
    当时,,为偶函数,其图像可以为A中的图像.
    当时,不是偶函数,其图像不关于y轴对称,∴当时,的图像可以为C中的图像.
    故选:AC
    三、填空题
    25.(2022春·北京房山·高二北京市房山区房山中学校考期中)函数的定义域为,函数与的图象如图所示,则不等式 的解集为_________________.
    【答案】
    【分析】由导函数与原函数的图象关系,判断实线为的图象,虚线表示的为的图象,结合图象即可得到不等式的解集;
    【详解】解:依题意由图可知:
    实线函数在时函数值小于零,当时函数值大于零,且在上单调递减,在上单调递增,
    虚线函数在时函数值小于零,当时函数值大于零,且在上单调递减,在上单调递增,
    根据导函数与原函数图象的关系可知实线函数表示的为的图象,
    虚线函数表示的为的图象,
    所以当时;
    故答案为:
    26.(2022春·上海长宁·高二上海市第三女子中学校考期末)在R上可导的函数的图象如图所示,则关于x的不等式的解集为______.
    【答案】或
    【分析】根据原函数的图象可得导数的符号,从而可求不等式的解.
    【详解】由的图象可得的解为或,
    的解为.
    而即为或,
    故或,
    故答案为:或
    27.(2022·全国·高二专题练习)如果函数的导数的图像如题图所示,则以下关于函数的判断:
    ①在区间上为严格增函数;
    ②在区间上为严格减函数;
    ③在区间上为严格增函数;
    ④是极小值点;
    ⑤是极大值点.
    其中正确的序号是______.
    【答案】③⑤
    【分析】由导函数的图象可判断出导数的正负,从而可判断出函数的单调区间和极值点,进而可得答案
    【详解】由导函数的图象可知,当或时,,
    当时,,
    所以在和上递减,在上递增,
    所以是函数的极小值,是函数的极大值点,
    所以正确的序号有③⑤,
    故答案为:③⑤
    28.(2022春·上海静安·高二校考期末)已知函数的定义域为R,其导函数的图象如图所示,则对于任意,下列结论正确的是___________.(填序号)
    ①恒成立;
    ②;
    ③;
    ④;

    【答案】②⑤
    【分析】由导数的图象,分析原函数的图象,根据图象的单调性判断①②③选项,根据图象的凹凸性判断④⑤选项.
    【详解】由题中图象可知,导函数的图象在x轴下方,即,且其绝对值越来越小,因此过函数图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得的大致图象如图所示.
    选项①,导函数只能反映原函数的单调性,不能反映原函数的正负,故①错;
    选项②表示与异号,即图象的割线斜率为负,故②正确,
    选项③表示与同号,即图象的割线斜率为正,故③不正确;表示对应的函数值,即图中点B的纵坐标,表示当和时所对应的函数值的平均值,即图中点A的纵坐标,显然有,故④不正确,⑤正确.
    故答案为:②⑤.
    四、解答题
    29.(2023·江苏·高二专题练习)已知函数
    (1)若,求曲线在处的切线方程;
    (2)若在上有两个极值点,求实数的取值范围.
    【答案】(1);
    (2).
    【分析】(1),当时,,,利用导数的几何意义以及直线的点斜式方程即可求出切线方程;
    (2)在上有两个极值点等价于在上有两个不同的实数根,即在上有两个不同的实数根,构造函数,,利用导数研究的单调性、极值以及最值,从而得出实数的取值范围.
    【详解】(1)当时,,,


    在处的切线方程为,即;
    (2)在上有两个极值点等价于在上有两个不同的实数根,
    即在上有两个不同的实数根,
    令,,

    令,解得,
    当时,,单调递减;
    当时,,单调递增;
    又,,,
    当时,方程在上有两个不同的实数根,
    实数的取值范围为.
    【点睛】关键点点睛:
    (1)在运用求导法则求的导数时,注意运算的正确性;
    (2)在运用导数的几何意义求在某点处的切线的斜率时,斜率,切线方程最好为一般式;
    (3)在上有两个极值点等价于在上有两个不同的实数根;
    (4)运用参变分离得到,构造函数,;
    (5)利用导数研究函数的性质时,应说明清楚单调性以及、、的取值情况.
    30.(2022春·山东泰安·高二宁阳县第四中学校考阶段练习)给定函数.
    (1)判断函数f(x)的单调性,并求出f(x)的极值;
    (2)画出函数f(x)的大致图象,无须说明理由(要求:坐标系中要标出关键点);
    (3)求出方程的解的个数.
    【答案】(1)函数的减区间为,增区间为,有极小值,无极大值;
    (2)具体见解析;
    (3)具体见解析.
    【分析】(1)对函数求导,进而求出单调区间和极值;
    (2)结合(1),并代入几个特殊点,再结合函数的变化趋势作出图象;
    (3)结合(2),采用数形结合的方法求得答案.
    【详解】(1),时,,单调递减,时,,单调递增,故函数在x=-1处取得极小值为,无极大值.
    (2)
    作图说明:由(1)可知函数先减后增,有极小值;描出极小值点,原点和点(1,e);当时,函数增加得越来越快,当时,函数越来越接近于0.
    (3)结合图象可知,若,则方程有0个解;若,则方程有2个解;若或,则方程有1个解.
    31.(2022春·广东广州·高二统考期末)已知函数
    (1)判断函数的单调性,并求出的极值;
    (2)在给定的直角坐标系中画出函数的大致图像;
    (3)讨论关于x的方程的实根个数.
    【答案】(1)函数的单调递增区间为,单调递减区间为;极小值为,无极大值
    (2)图象见解析
    (3)答案见解析
    【分析】(1)由导数得出其单调性以及极值;
    (2)由单调性画出函数的大致图像;
    (3)画出函数与函数的简图,由图像得出方程根的个数.
    (1)

    即函数的单调递增区间为,单调递减区间为
    极小值为,无极大值.
    (2)
    当时,;当时,,且
    结合单调性,可画出函数的大致图像,如下图所示
    (3)
    画出函数与函数的简图,如下图所示
    由图可知,当时,方程没有实数根;
    当或时,方程只有一个实数根;
    当时,方程有两个不相等的实数根;
    32.(2023秋·山西太原·高二统考期末)已知函数.
    (1)讨论函数在上的单调性;
    (2)若有两个极值点,求的取值范围.
    【答案】(1)见解析
    (2)
    【分析】(1),分和讨论即可;
    (2),题目转化为有两个零点,利用分离参数法得,设,利用导数研究得图像即可得到答案.
    【详解】(1),,
    当,则
    若,则在上单调递增;
    若,令,即,
    则在上单调递增.
    令,解得,则在上单调递减,
    综上,当时,在上单调递增,
    当时,在上单调递增,在上单调递减.
    (2),,
    因为有两个极值点,所以有两个零点,
    显然,1不是的零点,由,得.
    即直线与有两个交点,

    令,
    令,解得,
    且当时,,当时,
    所以在上单调递增,在上单调递减,
    而,故,
    所以在,和上单调递减,
    又在上,趋近于0时,趋近于正无穷,趋近于1时,趋近于负无穷,
    故函数在之间存在唯一零点,
    在上, 趋近于1时, 趋近于正无穷,趋近于正无穷时,趋近于0.
    作出图形如下图所示:
    所以.
    【点睛】关键点睛:本题第二问的关键在于等价转化为导函数在定义域上有两零点,然后利用分离参数法,得到,转化为直线与有两个交点,研究的图象,数形结合即可得到的范围.
    33.(2023·全国·高二专题练习)已知函数.
    (1)讨论的单调性;
    (2)若有两个零点,求的取值范围.
    【答案】(1)答案见解析;
    (2)
    【分析】(1)根据题意,分和两种情况讨论求解即可;
    (2)参变分离,构造函数,求导研究函数图像的单调性及极值,最值情况,求出的取值范围.
    【详解】(1)解:函数的定义域为,,
    所以,当时,恒成立,在上单调递增;
    当时,得,
    故当时,,单调递减,
    当时,,单调递增,
    综上,当时,在上单调递增;
    当时,在上单调递减,在上单调递增.
    (2)解:定义域为,
    有两个零点,即有两个实数解
    当时,不成立,故不是零点,
    当时,,
    设,,则,
    当或时,,当时,
    所以在上单调递减,在上单调递增,
    当时,恒成立,是的极小值点,
    画出函数的图像如下:

    因为要使有两个实数解,则与图像有两个交点,
    所以,当时,与图像有两个交点
    综上,的取值范围是
    【点睛】思路点睛:已知函数有零点或零点个数,求解参数取值范围问题,通常思路,一是参变分离,构造函数,研究其单调性及极值,最值情况,求出参数的取值范围;二是整体求导,再对参数进行分类讨论,结合零点存在性定理进行求解参数的取值范围.

    相关试卷

    通关练29 利用导数研究函数的图象及性质-2023-2024学年高二数学期末导与练(人教A版选择性必修第二册):

    这是一份通关练29 利用导数研究函数的图象及性质-2023-2024学年高二数学期末导与练(人教A版选择性必修第二册),文件包含通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册原卷版docx、通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    通关练29 利用导数研究函数的图象及性质-2023-2024学年高二数学专题高分突破(人教A版选择性必修第二册):

    这是一份通关练29 利用导数研究函数的图象及性质-2023-2024学年高二数学专题高分突破(人教A版选择性必修第二册),文件包含通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册原卷版docx、通关练29利用导数研究函数的图象及性质-高二数学题型归纳与解题策略人教A版选择性必修第二册解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    通关练30 利用导数解决比较大小问题-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册):

    这是一份通关练30 利用导数解决比较大小问题-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册),文件包含通关练30利用导数解决比较大小问题-高二数学题型归纳与解题策略人教A版选择性必修第二册原卷版docx、通关练30利用导数解决比较大小问题-高二数学题型归纳与解题策略人教A版选择性必修第二册解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        通关练29 利用导数研究函数的图象及性质-2023-2024学年学年高二数学高效讲与练(人教A版2019选择性必修第二册)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map