广东省肇庆市肇庆第四中学2023-2024学年数学九上期末检测试题含答案
展开
这是一份广东省肇庆市肇庆第四中学2023-2024学年数学九上期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,把二次函数化为的形式是,下列说法中,正确的是,在Rt△ABC中,∠C=90°等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图是半径为2的⊙O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )
A.2B.1C.D.
2.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( )
A.2或-2B.2C.-2D.0
3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )
①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4
A.1个B.2个C.3个D.4个
4.把二次函数化为的形式是
A.B.
C.D.
5.下列说法中,正确的是( )
A.如果k=0,是非零向量,那么k=0B.如果是单位向量,那么=1
C.如果||=||,那么=或=﹣D.已知非零向量,如果向量=﹣5,那么∥
6.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是( )
A.B.C.D.
7.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=( )
A.
B.
C.
D.
8.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是( )
A.①③B.①④C.②③D.②④
9.在Rt△ABC中,∠C=90°.若AC=2BC,则sinA的值是( )
A. B.C.D.2
10.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为( )
A.B.C.D.
11.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为
A.8B.C.4D.
12.若反比例函数的图像在第二、四象限,则它的解析式可能是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.
14.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.
15.线段,的比例中项是______.
16.抛物线与轴交点坐标为______.
17.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.
18.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.
三、解答题(共78分)
19.(8分)如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由
20.(8分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.
(1)求y与x之间的函数关系式;
(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.
21.(8分)如图,在菱形中,点在对角线上,延长交于点.
(1)求证:;
(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)
22.(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.
(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;
(2)从中任意抽取1个球恰好是红球的概率是 ;
(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
23.(10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
24.(10分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
25.(12分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.
26.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求△ABC的面积;
(3)抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、B
5、D
6、C
7、C
8、D
9、C
10、B
11、A
12、A
二、填空题(每题4分,共24分)
13、2
14、1.
15、
16、
17、1.
18、点P在⊙O上
三、解答题(共78分)
19、(1);(2)存在,当的周长最小时,点的坐标为.
20、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm.
21、(1)详见解析;(2)详见解析;
22、(1)必然,不可能;(2);(3)此游戏不公平.
23、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
24、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.
25、截去的小正方形的边长为2cm.
26、(1)y=x2﹣x﹣4;(2)10;(3)存在,M1(,11),M2(,﹣),M3(,﹣2),M4(,﹣﹣2).
相关试卷
这是一份肇庆市重点中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则,已知等内容,欢迎下载使用。
这是一份广东省肇庆市端州区地质中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,学校要组织足球比赛等内容,欢迎下载使用。
这是一份广东省肇庆市端州区2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了方程,下列事件中,属于必然事件的是,中,,是边上的高,若,则等于等内容,欢迎下载使用。