新疆巴音郭楞蒙古自治州第三中学2023-2024学年数学九年级第一学期期末统考模拟试题含答案
展开
这是一份新疆巴音郭楞蒙古自治州第三中学2023-2024学年数学九年级第一学期期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,反比例函数y=的图象经过点,关于二次函数y=﹣,如图,已知二次函数y=等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4B.3C.2D.
2.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2)B.(2,4),(3,1)
C.(2,2),(3,1)D.(3,1),(2,2)
3.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.;B.;
C.;D..
4.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )
A.B.C.D.
5.反比例函数y=的图象经过点(2,5),若点(1,n)在此反比例函数的图象上,则n等于( )
A.10B.5C.2D.
6.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是( )
A.图象开口向上 B.图象的对称轴是直线x=1
C.图象有最低点 D.图象的顶点坐标为(﹣1,2)
7.已知2是关于x的方程的一个根,则这个方程的另一个根是( )
A.3B.-3C.-5D.6
8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )
A.B.C.D.
9.已知二次函数的与的部分对应值如表:
下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是( )
A.B.C.D.
10.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值( )
A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5
11.与相似,且面积比,则与的相似比为( )
A.B.C.D.
12.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A.cmB.cmC.cmD.30cm
二、填空题(每题4分,共24分)
13.将半径为12,圆心角为的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为____.
14.如图,在中,,,.将绕点逆时针旋转,使点落在边上的处,点落在处,则,两点之间的距离为__________;
15.平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是_______.
16.关于的方程有一个根,则另一个根________.
17.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为__________米.
18.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.
三、解答题(共78分)
19.(8分)如图,在中,,,.动点从点出发,沿线段向终点以/的速度运动,同时动点从点出发,沿折线以/的速度向终点运动,当有一点到达终点时,另一点也停止运动,以、为邻边作设▱与重叠部分图形的面积为点运动的时间为.
(1)当点在边上时,求的长(用含的代数式表示);
(2)当点落在线段上时,求的值;
(3)求与之间的函数关系式,并写出自变量的取值范围.
20.(8分)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:
例:将化为分数形式
由于,设x=0.777…①
则10x=7.777…②
②‒①得9x=7,解得,于是得.
同理可得,
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(基础训练)
(1) , ;
(2)将化为分数形式,写出推导过程;
(能力提升)
(3) , ;(注:,2.01818…)
(探索发现)
(4)①试比较与1的大小: 1;(填“>”、“<”或“=”)
②若已知,则 .(注:0.285714285714…)
21.(8分)如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED.
22.(10分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题.
(1)在这次问卷调查中,共抽查了_________名同学;
(2)补全条形统计图;
(3)估计该校名同学中喜爱足球活动的人数;
(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
23.(10分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)图①中所画的四边形是中心对称图形;
(2)图②中所画的四边形是轴对称图形;
(3)所画的两个四边形不全等.
24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O 的切线,与AE的延长线交于点D,且AD⊥CD.
(1)求证:AC平分∠DAB;
(2)若AB=10,CD=4,求DE的长.
25.(12分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).
(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;
(2)求除点(2,0)外△ABC所有自相似点的坐标;
(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.
26.(12分)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、D
5、A
6、D
7、A
8、C
9、B
10、B
11、B
12、A
二、填空题(每题4分,共24分)
13、1
14、
15、1,3,3
16、2
17、
18、2π
三、解答题(共78分)
19、(1);(2);(3)详见解析
20、(1),;(2),推导过程见解析;(3),;(4)①;②.
21、电视塔的高度为12米.
22、(1)50;(2)见解析;(3)1020名;(4)树状图见解析,
23、(1)见解析;(2)见解析;(3)见解析
24、(1)见解析;(1)DE=1
25、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析
26、 (1)抛物线解析式y=x2–x+1;(2)点P坐标为(1,0),(3,0),(,0),(,0);(3)a=或.
相关试卷
这是一份新疆伊犁州2023-2024学年九上数学期末统考模拟试题含答案,共7页。试卷主要包含了半径为6的圆上有一段长度为1,方程的根的情况是,在中,,,若,则的长为,下列图标中,是中心对称图形的是等内容,欢迎下载使用。
这是一份新疆奇台县2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,用配方法解方程,方程应变形为,已知二次函数等内容,欢迎下载使用。
这是一份广州市东环中学2023-2024学年九年级数学第一学期期末统考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。