江苏省淮安市清江浦中学2023-2024学年九年级数学第一学期期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是( )
A.二次函数的最大值为a+b+cB.4a-2b+c﹤0
C.当y>0时,-1﹤x﹤3D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.
2.如图是由四个相同的小正方体组成的立体图形,它的主视图为( ).
A.B.C.D.
3.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有( )
A.1个B.2个C.3个D.4个
4.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是( )
A.P在圆内B.P在圆上C.P在圆外D.无法确定
5.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是 ( )
A.B.
C.D.
6.如图,的直径,是上一点,点平分劣弧,交于点,,则图中阴影部分的面积等于( )
A.B.C.D.
7.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
8.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )
A.B.C.D.
9.方程的根是( )
A.2B.0C.0或2D.0或3
10.下列式子中,为最简二次根式的是( )
A.B.C.D.
11.如图,在中,平分于.如果,那么等于( )
A.B.C.D.
12.已知二次函数的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正确的结论有( )
A.1个B.2个C.3个D.4个
二、填空题(每题4分,共24分)
13.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.
14.在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是 (结果保留π).
15.已知,则__________.
16.若=2,则=_____.
17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为_____cm.
18.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.
三、解答题(共78分)
19.(8分)已知等边△ABC,点D为BC上一点,连接AD.
图1 图2
(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;
(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.
20.(8分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.
21.(8分)阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
22.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)
23.(10分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.
(1)求点的坐标和反比例函数的解析式;
(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?
24.(10分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.
25.(12分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.
(1)点在函数的图象上,点的“坐标和”是 ;
(2)求直线的“智慧数”;
(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;
(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.
26.(12分)在同一平面内,将两个全等的等腰直角三角形和摆放在一起,为公共顶点,,若固定不动,绕点旋转,、与边的交点分别为、(点不与点重合,点不与点重合).
(1)求证:;
(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、B
4、C
5、B
6、A
7、B
8、B
9、D
10、B
11、D
12、B
二、填空题(每题4分,共24分)
13、1
14、.
15、
16、1
17、1
18、
三、解答题(共78分)
19、(1)补全图形见解析. ∠APE=60°;(2)补全图形见解析.,证明见解析.
20、见解析
21、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).
22、OC=100米;PB=米.
23、(1);(1)点恰好落在双曲线上
24、的长是
25、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或
26、(1)详见解析;(1)成立.
江苏省淮安市城北开明中学2023-2024学年数学九年级第一学期期末监测试题含答案: 这是一份江苏省淮安市城北开明中学2023-2024学年数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年江苏省淮安市清江浦区数学八上期末预测试题含答案: 这是一份2023-2024学年江苏省淮安市清江浦区数学八上期末预测试题含答案,共7页。试卷主要包含了下列计算正确的是,现有纸片等内容,欢迎下载使用。
2023-2024学年江苏省淮安市清江浦区江浦中学八年级数学第一学期期末经典模拟试题含答案: 这是一份2023-2024学年江苏省淮安市清江浦区江浦中学八年级数学第一学期期末经典模拟试题含答案,共7页。试卷主要包含了下列图形中对称轴条数最多的是,点P等内容,欢迎下载使用。