江苏省江阴市周庄中学2023-2024学年九上数学期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ).
A.中国女排一定会夺冠B.中国女排一定不会夺冠
C.中国女排夺冠的可能性比较大D.中国女排夺冠的可能性比较小
2.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是( )
A.100mB.100mC.150mD.50m
3.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
4.已知是实数,则代数式的最小值等于( )
A.-2B.1C.D.
5.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=( )
A.1B.C.D.
6.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是( )
A.B.C.D.
7.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为( )
A.1:3B.1:8C.1:9D.1:4
8.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是( )
A.35°B.55°C.65°D.70°
9.如图,在中,,,,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:①;②当点与点重合时,;③;④.其中正确的结论有( )
A.1个B.2个C.3个D.4个
10.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有( )
A.1个B.2个C.3个D.4个
11.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是( )
A.2B.4C.-2D.-4
12.下列倡导节约的图案中,是轴对称图形的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
14.如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D的直线折叠,使点A与BC边上的点E重合,折痕交AB于点F.若BE:EC=m:n,则AF:FB=
15.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.
16.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.
17.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.
18.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是____.
三、解答题(共78分)
19.(8分)如图,阳光下,小亮的身高如图中线段所示,他在地面上的影子如图中线段所示,线段表示旗杆的高,线段表示一堵高墙.
请你在图中画出旗杆在同一时刻阳光照射下形成的影子;
如果小亮的身高,他的影子,旗杆的高,旗杆与高墙的距离,请求出旗杆的影子落在墙上的长度.
20.(8分)如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.
(1)求反比例函数的解析式;
(2)直线与双曲线交点为、,记的面积为,的面积为,求
21.(8分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,
则:
(1)求出围成的圆锥的侧面积为多少;
(2)求出该圆锥的底面半径是多少.
22.(10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1),以原点为位似中心,在原点的另一侧画出△A1B1C1 ,使=,并写出△A1B1C1 各顶点的坐标.
23.(10分)根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.
24.(10分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.
(1)求证:OD∥BC;
(2)若AC=2BC,求证:DA与⊙O相切.
25.(12分)如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.
(1)若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;
(2)当点C在l下方时,求点C与l距离的最大值;
(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;
(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.
26.(12分)如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、A
4、C
5、B
6、D
7、C
8、B
9、B
10、C
11、A
12、C
二、填空题(每题4分,共24分)
13、1
14、
15、
16、
17、6
18、k≤5
三、解答题(共78分)
19、(1)作图见解析;(2)米.
20、(1);(2)
21、(1)11π;(1)1.
22、画图见解析;点A1(-2,-6),B1(-8,-4),C1(-4,-2).
23、见解析,
24、(1)证明见解析;(2)证明见解析.
25、(1)L的对称轴x=1.5,L的对称轴与a的交点为(1.5,﹣1.5 );(2)1;(1);(4)b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.
26、cm
江苏泰州周庄初级中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份江苏泰州周庄初级中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了下列运算中,正确的是等内容,欢迎下载使用。
江苏泰州周庄初级中学2023-2024学年九上数学期末调研试题含答案: 这是一份江苏泰州周庄初级中学2023-2024学年九上数学期末调研试题含答案,共7页。试卷主要包含了下列事件,﹣2的绝对值是等内容,欢迎下载使用。
2023-2024学年江苏省宜兴市新芳中学九上数学期末调研模拟试题含答案: 这是一份2023-2024学年江苏省宜兴市新芳中学九上数学期末调研模拟试题含答案,共8页。试卷主要包含了已知函数,下列语句中正确的是等内容,欢迎下载使用。