江西省瑞金市瑞金四中学2023-2024学年数学九年级第一学期期末教学质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小B.平均数变小,方差变大
C.平均数变大,方差变小D.平均数变大,方差变大
2.下列方程中,是关于x的一元二次方程的是( )
A.B.C.D.
3.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC的高为 1.6 m,并测得BC=2.2 m ,CA=0.8 m, 那么树DB的高度是( )
A.6 mB.5.6 mC.5.4 mD.4.4 m
4.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )
A.B.
C.D.
5.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y=的图象上,则有( )
A.a>b>cB.c>b>aC.c>a>bD.b>c>a
6.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为( )
A.42°B.48°
C.52°D.58°
7.若是方程的根,则的值为( )
A.2022B.2020C.2018D.2016
8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )
A.B.C.D.
9.如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是( )
A.3B.4C.5D.6
10.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是( )
A.B.C.D.
11.如图,抛物线y=﹣x2+2x+2交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.下列说法:其中正确判断的序号是( )
①抛物线与直线y=3有且只有一个交点;
②若点M(﹣2,y1),N(1,y2),P(2,y3)在该函数图象上,则y1<y2<y3;
③将该抛物线先向左,再向下均平移2个单位,所得抛物线解析式为y=(x+1)2+1;
④在x轴上找一点D,使AD+BD的和最小,则最小值为.
A.①②④B.①②③C.①③④D.②③④
12.某班一物理科代表在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有36人会做这个实验;若设1人每次都能教会x名同学,则可列方程为( )
A.x+(x+1)x=36B.1+x+(1+x)x=36
C.1+x+x2=36D.x+(x+1)2=36
二、填空题(每题4分,共24分)
13.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
14.方程的解是________.
15.在中,,,,则的值是__________.
16.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.
17.已知中,,的面积为1.
(1)如图,若点分别是边的中点,则四边形的面积是__________.
(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.
18.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.
三、解答题(共78分)
19.(8分)如图,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.
(1)画出位似中心O;
(2)△ABC与△A′B′C′的相似比为__________,面积比为__________.
20.(8分)如图1,抛物线与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=1.
(1)求抛物线的解析式;
(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;
(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.
21.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.
(1)求证:EG是⊙O的切线;
(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.
22.(10分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,PD=,求PA的长;
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
23.(10分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为10cm,点A,C,E在同一条直线上,且∠CAB=75°,如图1.
(1)求车架档AD的长;
(1)求车座点E到车架档AB的距离.
(结果精确到1 cm.参考数据: sin75°="0.966," cs75°=0.159,tan75°=3.731)
24.(10分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.
(1)求直线l的表达式;
(2)若反比例函数的图象经过点P,求m的值.
25.(12分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.
26.(12分)如图,为了估算河的宽度,我们可以在河对岸选定一点,再在河的这一边选定点和点,使得,然后选定点,使,确定与的交点,若测得米,米,米,请你求出小河的宽度是多少米?
参考答案
一、选择题(每题4分,共48分)
1、A
2、C
3、A
4、D
5、D
6、A
7、B
8、A
9、B
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、x1=2,x2=1
14、 .
15、
16、1
17、31.5; 26
18、
三、解答题(共78分)
19、(1)作图见解析;(2)2∶1;4∶1.
20、(1);见解析;(2);见解析;(3)存在,点Q的坐标为:(﹣1,﹣1)或(﹣,﹣)或(,);详解解析.
21、(1)证明见解析;(2)
22、(1)证明见解析;(2)1;(3)证明见解析.
23、(1)75cm(1)2cm
24、(1);(2).
25、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=
26、小河的宽度是210米.
2023-2024学年江西省上饶中学数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年江西省上饶中学数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列命题正确的是,下列事件中,是必然事件的是,若,则下列等式成立的是等内容,欢迎下载使用。
2023-2024学年江西省瑞金市瑞金四中学八上数学期末统考试题含答案: 这是一份2023-2024学年江西省瑞金市瑞金四中学八上数学期末统考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,正比例函数,已知,则分式的值为,周长38的三角形纸片,若,则的值为等内容,欢迎下载使用。
江西省瑞金市瑞金四中学2023-2024学年八年级数学第一学期期末质量检测试题含答案: 这是一份江西省瑞金市瑞金四中学2023-2024学年八年级数学第一学期期末质量检测试题含答案,共6页。试卷主要包含了已知等内容,欢迎下载使用。