江西省寻乌县2023-2024学年九上数学期末经典模拟试题含答案
展开这是一份江西省寻乌县2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的个数是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,PA是⊙O的切线,OP交⊙O于点B,如果,OB=1,那么BP的长是( )
A.4B.2C.1D.
2.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为( )
A.B.C.2D.4
3.将抛物线向右平移个单位后,得到的抛物线的解析式是( )
A.B.C.D.
4.下列命题是真命题的个数是( ).
①64的平方根是;
②,则;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A.1个B.2个C.3个D.4个
5.下列事件中,属于必然事件的是( )
A.明天太阳从北边升起B.实心铅球投入水中会下沉
C.篮球队员在罚球线投篮一次,投中D.抛出一枚硬币,落地后正面向上
6.的直径为,点与点的距离为,点的位置( )
A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定
7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④B.①②⑤C.②③④D.③④⑤
8.如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为( )
A.2B.3C.4D.5
9.在平面直角坐标系中,反比例函数的图象经过第一、三象限,则的取值范围是( )
A.B.C.D.
10.已知关于x的一元二次方程的一个根为1,则m的值为( )
A.1B.-8C.-7D.7
11.如图,从左边的等边三角形到右边的等边三角形,经过下列一次变化不能得到的是( )
A.轴对称B.平移C.绕某点旋转D.先平移再轴对称
12.如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是______________.
14.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
15.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.
16.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:
①连接DD',则AP垂直平分DD';
②四边形PMBN是菱形;
③AD2=DP•PC;
④若AD=2DP,则;
其中正确的结论是_____(填写所有正确结论的序号)
17.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.
18.如图,角α的两边与双曲线y=(k<0,x<0)交于A、B两点,在OB上取点C,作CD⊥y轴于点D,分别交双曲线y=、射线OA于点E、F,若OA=2AF,OC=2CB,则的值为______.
三、解答题(共78分)
19.(8分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.
(1)求抛物线的表达式;
(2)求的正切值;
(3)如果点是抛物线上的一点,且,试直接写出点的坐标.
20.(8分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).
(1)求这条抛物线的解析式;
(2)水面上升1m,水面宽是多少?
21.(8分)对于平面直角坐标系中的点和半径为1的,定义如下:
①点的“派生点”为;
②若上存在两个点,使得,则称点为的“伴侣点”.
应用:已知点
(1)点的派生点坐标为________;在点中,的“伴侣点”是________;
(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;
(3)点的派生点在直线,求点与上任意一点距离的最小值.
22.(10分)(1)计算:;
(2)解方程:.
23.(10分)如图,同学们利用所学知识去测量海平面上一个浮标到海岸线的距离. 在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,小宇同学在A处观测得浮标在北偏西60°的方向,小英同学在距点A处60米远的B点测得浮标在北偏西45°的方向,求浮标C到海岸线l的距离(结果精确到0.01 m).
24.(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.
求证:是的切线;
已知的半径是.
①若是的中点,,则 ;
②若,求的长.
25.(12分)如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.
(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;
(2)若α=45°,求BD:DC的值;
(3)求证:AM•CN=AN•BD.
26.(12分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.
(1)当点B于点O重合的时候,求三角板运动的时间;
(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.
①求证:EF平分∠AEC;
②求EF的长.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、B
4、C
5、B
6、A
7、A
8、C
9、B
10、D
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、3或1
15、18
16、①②③
17、
18、
三、解答题(共78分)
19、(1);(2);(2)点的坐标是或
20、(1)y=﹣x2+2x;(2)2m
21、(1)(1,0),E、D、;(2);(3)
22、(1);(2),
23、点C到海岸线l的距离约为81.96km.
24、(1)详见解析;(2)①;②
25、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)见解析
26、(1)2s(2)①证明见解析,②
相关试卷
这是一份鲍沟中学2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列二次函数中,顶点坐标为,下列函数是关于的反比例函数的是,若,则的值为等内容,欢迎下载使用。
这是一份天津市2023-2024学年九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份2023-2024学年江西省九江市修水县数学九上期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,在△ABC中,∠C=90°等内容,欢迎下载使用。