河南师范大附属中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.方程x2=x的解是( )
A.x=1B.x=0C.x1=1,x2=0D.x1=﹣1,x2=0
2.若,面积之比为,则相似比为( )
A.B.C.D.
3.(2011?德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是( )
A.a4>a2>a1B.a4>a3>a2
C.a1>a2>a3D.a2>a3>a4
4.如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:
①;
②;
③方程的两个根是,;
④当时,的取值范围是;
⑤当时,随增大而增大
其中结论正确的个数是
A.1个B.2个C.3个D.4个
5.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.
小明计算橡胶棒CD的长度为( )
A.2分米B.2分米C.3分米D.3分米
6.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是( ).
A.B.C.D.
7.若均为锐角,且,则( ).
A.B.
C.D.
8.已知二次函数y=﹣x2﹣bx+1(﹣5<b<2),则函数图象随着b的逐渐增大而( )
A.先往右上方移动,再往右平移
B.先往左下方移动,再往左平移
C.先往右上方移动,再往右下方移动
D.先往左下方移动,再往左上方移动
9.作⊙O的内接正六边形ABCDEF,甲、乙两人的作法分别是:
甲:第一步:在⊙O上任取一点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F. 第二步:依次连接这六个点.
乙:第一步:任作一直径AD.第二步:分别作OA,OD的中垂线与⊙O相交,交点从点A开始,依次为点B,C,E,F. 第三步:依次连接这六个点.
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲、乙均错误
C.甲错误,乙正确D.甲、乙均正确
10.已知正方形的边长为4cm,则其对角线长是()
A.8cmB.16cmC.32cmD.cm
11.二次函数y=-2(x+1)2+3的图象的顶点坐标是( )
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)
12.如图,在中,,则AC的长为( )
A.5B.8C.12D.13
二、填空题(每题4分,共24分)
13.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.
14.已知x=1是方程x2﹣a=0的根,则a=__.
15.计算若,那么a2019 +b2020=____________.
16.在Rt△ABC中,若∠C=90°,csA=,则sinA=________.
17.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.
18.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .
三、解答题(共78分)
19.(8分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.
(1)求抛物线的表达式;
(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).
①当为何值时,得面积最小?
②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.
20.(8分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N,若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D、F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
21.(8分)已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.
(1)求抛物线的解析式;
(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;
(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.
22.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
23.(10分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于A(﹣2,0),点B(4,0).
(1)求抛物线的解析式;
(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;
(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.
24.(10分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
25.(12分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.
(1)求证:△ABH是等腰三角形;
(2)求证:直线PC是⊙O的切线;
(3)若AB=2,AD=,求⊙O的半径.
26.(12分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、C
5、B
6、C
7、D
8、D
9、D
10、D
11、B
12、A
二、填空题(每题4分,共24分)
13、120°
14、1
15、0
16、
17、
18、1
三、解答题(共78分)
19、(1);(2)① ;②
20、(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
21、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+);(2)MD2=n2﹣n+3;点M的坐标为( ,)或(,).
22、(1);(2)
23、(1)y=﹣x2+x+4;(2)(2,4);(3)存在,(1,)或(3,)
24、此时快艇与岛屿C的距离是20nmile.
25、 (1)见解析;(2)见解析;(3) .
26、 (1)见解析;(2)①;②;(3)
陕西西安雁塔区师范大附属中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案: 这是一份陕西西安雁塔区师范大附属中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共8页。
河南师范大附属中学2023-2024学年九年级数学第一学期期末考试模拟试题含答案: 这是一份河南师范大附属中学2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共7页。试卷主要包含了如图,在中,,则AC的长为等内容,欢迎下载使用。
广州大附属中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案: 这是一份广州大附属中学2023-2024学年九年级数学第一学期期末经典模拟试题含答案,共8页。试卷主要包含了抛物线与y轴的交点坐标是,如图放置的几何体的左视图是等内容,欢迎下载使用。