河南省平顶山市第四十三中学2023-2024学年九年级数学第一学期期末监测试题含答案
展开
这是一份河南省平顶山市第四十三中学2023-2024学年九年级数学第一学期期末监测试题含答案,共8页。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是
A.B.C.D.
2.下列说法正确的是( )
A.“清明时节雨纷纷”是必然事件
B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查
C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55
D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好
3.一元二次方程的两个根为,则的值是( )
A.10B.9C.8D.7
4.一个半径为2cm的圆的内接正六边形的面积是( )
A.24cm2B.6cm2C.12cm2D.8cm2
5.下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
6.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式( )
A.B.C.D.
7.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( )
A.B.
C.D.
8.如图,在△ABC中,∠A=45°,∠C=90°,点D在线段AC上,∠BDC=60°,AD=1,则BD等于( )
A.B.+1C.-1D.
9.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为( )
A.B.C.D.
10.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是( )
A.B.
C.D.
11.如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为( )
A.B.C.D.
12.已知⊙O的半径为13,弦AB//CD,AB=24,CD=10,则AB、CD之间的距离为
A.17B.7C.12D.7或17
二、填空题(每题4分,共24分)
13.如图,在△ABC中,∠ACB=90°,点G是△ABC的重心,且AG⊥CG,CG的延长线交AB于H.则S△AGH:S△ABC 的值为 ____.
14.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.
①弦AB的长度为_____;
②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.
15.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.
16.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=______.
17.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.
18.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.
三、解答题(共78分)
19.(8分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选中其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题:
(1)求m,n的值.
(2)补全条形统计图.
(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.
20.(8分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.
(1)求抛物线的表达式及点的坐标;
(2)点是轴正半轴上的一点,如果,求点的坐标;
(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.
21.(8分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=,设这种产品每天的销售利润为y(元) .
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?
22.(10分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.
(1)求k的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;
(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
23.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0
(1)若方程有实数根,求m的取值范围.
(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.
24.(10分)如图,矩形中,是边上一动点,过点的反比例函数的图象与边相交于点.
(1)点运动到边的中点时,求反比例函数的表达式;
(2)连接,求的值.
25.(12分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
26.(12分)用适当的方法解下列方程.
(1)3x(x+3)=2(x+3)
(2)2x2﹣4x﹣3=1.
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、B
5、A
6、C
7、A
8、B
9、C
10、D
11、B
12、D
二、填空题(每题4分,共24分)
13、1:6
14、2. -1
15、8
16、80°或120°
17、
18、3n+1.
三、解答题(共78分)
19、(1),;(2)见解析;(3)300人.
20、(1),;(2);(3)或
21、(1);(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元
22、(1)且;(2)见解析,M(3,4) ;(3)△ABM的面积有最大值,
23、(1)m≥;(2)m=3
24、(1);(2).
25、(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元
26、 (1)x1=−3,x2=(2)
相关试卷
这是一份2023-2024学年河南省平顶山市数学九年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中为中心对称图形的是,正方形具有而菱形不具有的性质是,如图,是的切线,切点分别是,下列说法中正确的有等内容,欢迎下载使用。
这是一份河南省平顶山市第四十二中学2023-2024学年九上数学期末统考模拟试题含答案,共7页。试卷主要包含了下列事件中是必然事件的是,将抛物线y=,如图,已知,下列四个数中是负数的是等内容,欢迎下载使用。
这是一份2023-2024学年河南省平顶山市第四十二中学数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了的值等于,下列事件是必然事件的是等内容,欢迎下载使用。