河南省信阳罗山县联考2023-2024学年数学九上期末联考试题含答案
展开
这是一份河南省信阳罗山县联考2023-2024学年数学九上期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则下列图象中,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
2.下列方程是一元二次方程的是( )
A.B.C.D.
3.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是( )
A.y1>y2B.y1<y2
C.y1=y2D.无法比较y1,y2的大小
4.如图为二次函数的图象,则下列说法:①;②;③;④;⑤,其中正确的个数为( )
A.1B.2C.3D.4
5.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A.cmB.3cmC.4cmD.4cm
6.顺次连接四边形ABCD各边的中点,所得四边形是( )
A.平行四边形
B.对角线互相垂直的四边形
C.矩形
D.菱形
7.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是( )
A.45°B.60°C.90°D.135°
8.下列各坐标表示的点在反比例函数图象上的是( )
A.B.C.D.
9.在同一平面直角坐标系中,函数与的图象可能是( )
A.B.
C.D.
10.若点在反比例函数的图象上,且,则下列各式正确的是( )
A.B.C.D.
11.如图,线段AB是⊙O的直径,弦,,则等于( ).
A.B.C.D.
12.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )
A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30
C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30
二、填空题(每题4分,共24分)
13.方程(x﹣1)2=4的解为_____.
14.若关于x的方程x2-kx+9=0(k为常数)有两个相等的实数根,则k=_____.
15.如图,在△ABC 中,点 D,E 分别在边 AB,AC上,若 DE∥BC,AD=2BD,则 DE:BC 等于_______.
16.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的半径为 cm.
17.二次函数的图象如图所示,若,.则、的大小关系为_____.(填“”、“”或“”)
18.在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.
三、解答题(共78分)
19.(8分)已知抛物线C1的解析式为y= -x2+bx+c,C1经过A(-2,5)、B(1,2)两点.
(1)求b、c的值;
(2)若一条抛物线与抛物线C1都经过A、B两点,且开口方向相同,称两抛物线是“兄弟抛物线”,请直接写出C1的一条“兄弟抛物线”的解析式.
20.(8分)综合与实践:
如图,已知 中,.
(1)实践与操作: 作 的外接圆,连结 ,并在图中标明相应字母;(尺规作图,保留作图痕迹, 不写作法)
(2)猜想与证明: 若,求扇形的面积.
21.(8分)有红、黄两个盒子,红盒子中藏有三张分别标有数字,,1的卡片,黄盒子中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现甲从红盒子中取出一张卡片,乙从黄盒子中取出一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的a,b能使得二次函数y=ax2+bx+1的图像与x轴有两个不同的交点,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
22.(10分)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
求一次函数的表达式;
若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
23.(10分)如图,AB是垂直于水平面的一座大楼,离大楼20米(BC=20米)远的地方有一段斜坡CD(坡度为1:0.75),且坡长CD=10米,某日下午一个时刻,在太阳光照射下,大楼的影子落在了水平面BC,斜坡CD,以及坡顶上的水平面DE处(A、B、C、D、E均在同一个平面内).若DE=4米,且此时太阳光与水平面所夹锐角为24°(∠AED=24°),试求出大楼AB的高.(其中,sin24°≈0.41,cs24°≈0.91,tan24°≈0.45)
24.(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?
(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.
25.(12分)如图,在平面直角坐标系中,点是轴正半轴上的一动点,抛物线(是常数,且过点,与轴交于两点,点在点左侧,连接,以为边做等边三角形,点与点在直线两侧.
(1)求B、C的坐标;
(2)当轴时,求抛物线的函数表达式;
(3)①求动点所成的图像的函数表达式;
②连接,求的最小值.
26.(12分)如图,在平面直角坐标系中,正方形OABC的顶点A、C在坐标轴上,△OCB绕点O顺时针旋转90°得到△ODE,点D在x轴上,直线BD交y轴于点F,交OE于点H,OC的长是方程x2-4=0的一个实数根.
(1)求直线BD的解析式.
(2)求△OFH的面积.
(3)在y轴上是否存在点M,使以点B、D、M三点为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,不必说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、A
4、D
5、C
6、A
7、C
8、B
9、D
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、x1=3,x2=﹣1
14、±1
15、2:1
16、1.
17、
相关试卷
这是一份河南省信阳市罗山县2023-2024学年九年级上学期期末数学试题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省信阳浉河区七校联考2023-2024学年数学九上期末检测模拟试题含答案,共7页。试卷主要包含了关于二次函数,下列说法错误的是等内容,欢迎下载使用。
这是一份2023-2024学年河南省罗山县联考九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,四边形的顶点坐标分别为,抛物线y=2等内容,欢迎下载使用。