浙江省宁波市东方中学2023-2024学年九年级数学第一学期期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.关于二次函数,下列说法正确的是( )
A.图像与轴的交点坐标为B.图像的对称轴在轴的右侧
C.当时,的值随值的增大而减小D.的最小值为-3
2.已知点都在反比例函数的图像上,那么( )
A.B.C.D.的大小无法确定
3.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=( )
A.1B.3C.﹣1D.﹣3
4.将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是( )
A.B.y=
C.y=D.y=
5.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是( )
A.有两个相等的实数根B.有两个异号的实数根
C.有两个不相等的实数根D.没有实数根
6.如图 ,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点 A 顺时针方向旋转 60°得到△A′B′C′的位置,连接 C′B,则 C′B 的长为 ( )
A.2-B.C.D.1
7.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是( )
A.c=0B.c=1C.c=0或c=1D.c=0或c=﹣1
8.将二次函数化成顶点式,变形正确的是:( )
A.B.C.D.
9.图中的两个三角形是位似图形,它们的位似中心是( )
A.点PB.点D
C.点MD.点N
10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是( )
A.6(m﹣n)B.3(m+n)C.4nD.4m
11.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是( )
A.b=a+cB.b=acC.b2=a2+c2D.b=2a=2c
12.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是( )
A.两根都垂直于地面B.两根平行斜插在地上C.两根不平行D.两根平行倒在地上
二、填空题(每题4分,共24分)
13.如图所示平面直角坐标系中,点A,C分别在x轴和y轴上,点B在第一象限,BC=BA,∠ABC=90°,反比例函数y=.(x>0)的图象经过点B,若OB=2,则k的值为_____.
14.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.
15.在Rt△ABC中,∠C=90°,如果csB=,BC=4,那么AB的长为________.
16.圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度.
17.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:
据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)
18.点P(﹣6,3)关于x轴对称的点的坐标为______.
三、解答题(共78分)
19.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将右上表补充完整:(参考公式:方差)
(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;
(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
20.(8分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,求PD的长度最大时点P的坐标.
(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.
21.(8分)已知:如图,在矩形中,点为上一点,连接,过点作于点,与相似吗?请说明理由.
22.(10分)如图,某数学兴趣小组的同学利用标杆测量旗杆的高度:将一根米高的标杆竖直放在某一位置,有一名同学站在处与标杆底端、旗杆底端成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆米,离旗杆米.如果站立的同学的眼睛距地面米,过点作于点,交于点,求旗杆的高度.
23.(10分)小王准备给小李打电话,由于保管不善,电话本上的小李手机号中,有两个数字已经模糊不清,如果用,表示这两个看不清的数字,那么小李的号码为(手机号码由11个数字组成),小王记得这11个数字之和是20的整数倍.
(1)求的值;
(2)求出小王一次拨对小李手机号的概率.
24.(10分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)
25.(12分)如图,已知矩形的边,,点、分别是、边上的动点.
(1)连接、,以为直径的交于点.
①若点恰好是的中点,则与的数量关系是______;
②若,求的长;
(2)已知,,是以为弦的圆.
①若圆心恰好在边的延长线上,求的半径:
②若与矩形的一边相切,求的半径.
26.(12分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:
(1)画出经过一次直角旋转后得到的;
(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为 ;此时,与的位置关系为 .
(3)求出点旋转到点所经过的路径长.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、C
4、A
5、A
6、C
7、C
8、A
9、A
10、D
11、A
12、C
二、填空题(每题4分,共24分)
13、1
14、1
15、6
16、1
17、 B
18、 (﹣6,﹣3).
三、解答题(共78分)
19、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析
20、 (1)y=x2﹣4x+1;(2)PD的长度最大时点P的坐标为(,﹣);(1)点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2)
21、相似,见解析
22、旗杆的高度为15.6米.
23、(1)14;(2).
24、教学楼DF的高度为.
25、(1)①;②1.5;(2)①5;②、,、5.
26、(1)图见解析;(2)2,关于中心对称;(3).
等待时的频数间
乘车等待时间
地铁站
5≤t≤10
10<t≤15
15<t≤20
20<t≤25
25<t≤30
合计
A
50
50
152
148
100
500
B
45
215
167
43
30
500
平均数
方差
中位数
甲
7
① .
7
乙
② .
5.4
③ .
浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份浙江省宁波市东方中学2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。
浙江省宁波市名校2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案: 这是一份浙江省宁波市名校2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了学校要组织足球比赛,若关于x的方程等内容,欢迎下载使用。
浙江省宁波市象山县2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份浙江省宁波市象山县2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。