浙江省宁波海曙区七校联考2023-2024学年数学九上期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.使关于的二次函数在轴左侧随的增大而增大,且使得关于的分式方程有整数解的整数的和为( )
A.10B.4C.0D.3
2.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3B.4C.5D.6
3.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是( )
A.13B.16C.12或13D.11或16
4.下列说法正确的是( )
A.三点确定一个圆
B.同圆中,圆周角等于圆心角的一半
C.平分弦的直径垂直于弦
D.一个三角形只有一个外接圆
5.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()
A.米B.米C.米D.米
6.某果园2017年水果产量为100吨,2019年水果产量为144吨,则该果园水果产量的年平均增长率为( )
A.10%B.20%C.25%D.40%
7.若关于的方程的一个根是,则的值是( )
A.B.C.D.
8.在平面直角坐标中,把△ABC以原点O为位似中心放大,得到△A'B'C',若点A和它对应点A'的坐标分别为(2,5),(-6,-15),则△A'B'C'与△ABC的相似比为( )
A.-3B.3C.D.
9.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
A.B.C.D.
10.如图,⊙O 中弦AB =8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是( )
A.4B.5C.6D.1°
11.已知点都在双曲线上,且,则的取值范围是( )
A.B.C.D.
12.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.
14.方程(x+1)(x﹣2)=5化成一般形式是_____.
15.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.
16.的半径为4,圆心到直线的距离为2,则直线与的位置关系是______.
17.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.
18.若,则的值为__________.
三、解答题(共78分)
19.(8分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
20.(8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)请将条形统计图补充完整;
(2)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(3)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表法或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
21.(8分)如图,在矩形中对角线、相交于点,延长到点,使得四边形是一个平行四边形,平行四边形对角线交、分别为点和点.
(1)证明:;
(2)若,,则线段的长度.
22.(10分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在这一组的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年级成绩的平均数、中位数如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上(含80分)的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
23.(10分)若直线与双曲线的交点为,求的值.
24.(10分)为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.
(1)求这天“岁及以上行人”中每天违章人数的众数.
(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.
(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.
25.(12分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:EB=DC;
(2)连接DE,若∠BED=50°,求∠ADC的度数.
26.(12分)如图,已知四边形ABCD是平行四边形.
(1)尺规作图:按下列要求完成作图;(保留作图痕迹,请标注字母)
①连AC;
②作AC的垂直平分线交BC、AD于E、F;
③连接AE、CF;
(2)判断四边形AECF的形状,并说明理由.
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、A
4、D
5、A
6、B
7、A
8、B
9、B
10、B
11、D
12、C
二、填空题(每题4分,共24分)
13、1
14、x2﹣x﹣7=1.
15、x1>2或x1<1.
16、相交
17、
18、
三、解答题(共78分)
19、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
20、(1)见解析;(2)“划龙舟”所在扇形的圆心角的度数为:90°;(3)两个项目的概率是.
21、(1)证明见解析;(2).
22、(1)23(2)77.5(3)甲学生在该年级的排名更靠前(4)224
23、1
24、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)
25、(1)证明见解析;(2)110°
26、(1)作图见解析;(2)四边形AECF为菱形,理由见解析.
年级
平均数
中位数
七
76.9
m
八
79.2
79.5
06,浙江省宁波市海曙区宁波市海曙区十校联考2023-2024学年九年级上学期期中数学试题: 这是一份06,浙江省宁波市海曙区宁波市海曙区十校联考2023-2024学年九年级上学期期中数学试题,共25页。试卷主要包含了3元/份3, 下列说法正确的是, 如图,在⊙O中,,则的度数为等内容,欢迎下载使用。
浙江省宁波市海曙区三校联考2023-2024学年九上数学期末统考模拟试题含答案: 这是一份浙江省宁波市海曙区三校联考2023-2024学年九上数学期末统考模拟试题含答案,共8页。
2023-2024学年浙江省宁波北仑区六校联考九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年浙江省宁波北仑区六校联考九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列各说法中等内容,欢迎下载使用。