浙江省金华市国际实验学校2023-2024学年九上数学期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.已知,则=( )
A.B.C.D.
2.下列成语表示随机事件的是( )
A.水中捞月 B.水滴石穿 C.瓮中捉鳖 D.守株待兔
3.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组B.乙组C.丙组D.丁组
4.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于( )
A.B.C.D.
5.下列对于二次函数y=﹣x2+x图象的描述中,正确的是( )
A.开口向上B.对称轴是y轴
C.有最低点D.在对称轴右侧的部分从左往右是下降的
6.如图,在中, , 为上一点,,点从点出发,沿方向以的速度匀速运动,同时点由点出发,沿方向以的速度匀速运动,设运动时间为,连接交于点 ,若,则的值为( )
A.1B.2C.3D.4
7.二次函数的图象与轴有且只有一个交点,则的值为( )
A.1或-3B.5或-3C.-5或3D.-1或3
8.已知是的反比例函数,下表给出了与的一些值,表中“▲”处的数为( )
A.B.C.D.
9.如图,线段,点是线段的黄金分割点(),点是线段的黄金分割点(),点是线段的黄金分割点(),..,依此类推,则线段的长度是( )
A.B.C.D.
10.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是( )
A.50°B.65°C.100°D.130°
11.正十边形的外角和为( )
A.180°B.360°C.720°D.1440°
12.已知△ABC∽△A1B1C1,若△ABC与△A1B1C1的相似比为3:2,则△ABC与△A1B1C1的周长之比是( )
A.2:3B.9:4C.3:2D.4:9
二、填空题(每题4分,共24分)
13.如图,直角三角形ABC中,∠ACB=90°,AB=10, BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD= .
14.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.
15.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
16.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为_____.
17.若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
18.如图,RtABC中,∠C=90°,AC=10,BC=1.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为_____.
三、解答题(共78分)
19.(8分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.
(1)求点A,点B的坐标;
(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.
20.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意:B级满意;C级:基本满意:D级:不满意),并将调查结果绘制成如两幅不完整的统计图,请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是 ;
(2)图①中,∠α的度数是 ,并把图②条形统计图补充完整;
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的户数约为多少户?
21.(8分)如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.
(1)求这个二次函数的表达式;
(1)若点M为x轴上一点,求MD+MA的最小值.
22.(10分)如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.
(1)求线段的长;
(2)点到的距离为3,求圆的半径.
23.(10分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.
(1)求的值:
(2)若,求的长.
24.(10分)如图,在中,,求的度数.
25.(12分)问题提出:
如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
a.每次只能移动1个金属片;
b.较大的金属片不能放在较小的金属片上面.
把个金属片从1号针移到3号针,最少移动多少次?
问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.
探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.
探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:
a.把第1个金属片从1号针移到2号针;
b.把第2个金属片从1号针移到3号针;
c.把第1个金属片从2号针移到3号针.
用符号表示为:,,.共移动了3次.
探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:
a.把上面两个金属片从1号针移到2号针;
b.把第3个金属片从1号针移到3号针;
c.把上面两个金属片从2号针移到3号针.
其中(1)和(3)都需要借助中间针,用符号表示为:
,,,,,,.共移动了7次.
(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.
(2)探究五:根据上面的规律你可以发现当时,需要移动________次.
(3)探究六:把个金属片从1号针移到3号针,最少移动________次.
(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.
26.(12分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;
(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;
(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、C
5、D
6、B
7、B
8、D
9、A
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、3.2.
14、
15、
16、
17、
18、
三、解答题(共78分)
19、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).
20、(1)60户;(2)54°;(3)1500户.
21、(1);(1).
22、(1);(2)圆的半径为1.
23、(1);(2)4
24、70°
25、(1)当时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).
(2),(3),(4)
26、 (1)共调查了50名学生,补图见解析;(2).
▲
浙江省金华市金东区2023-2024学年九上数学期末监测模拟试题含答案: 这是一份浙江省金华市金东区2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了化简的结果是,一元二次方程的解为等内容,欢迎下载使用。
浙江省金华市兰溪市2023-2024学年九上数学期末统考模拟试题含答案: 这是一份浙江省金华市兰溪市2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,的值等于等内容,欢迎下载使用。
2023-2024学年浙江省金华市婺城区九上数学期末检测试题含答案: 这是一份2023-2024学年浙江省金华市婺城区九上数学期末检测试题含答案,共8页。试卷主要包含了一个物体如图所示,它的俯视图是等内容,欢迎下载使用。