湖北省广水市2023-2024学年九上数学期末经典试题含答案
展开
这是一份湖北省广水市2023-2024学年九上数学期末经典试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.二次函数的图象如图所示,对称轴为直线,下列结论不正确的是( )
A.
B.当时,顶点的坐标为
C.当时,
D.当时,y随x的增大而增大
2.已知⊙O的直径为12cm,如果圆心O到一条直线的距离为7cm,那么这条直线与这个圆的位置关系是( )
A.相离B.相切C.相交D.相交或相切
3.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是( )
A.相交B.外切C.内切D.内含
4.下列事件中,是随机事件的是( )
A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯
C.太阳从东方升起D.任意一个五边形的外角和等于540°
5.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )
A.y=- (x+1)2+1B.y=- (x+1)2-1C.y=- (x-1)2+ 1D.y=- (x-1)2-1
6.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )
A.B.C.D.
7.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为( )
A.60°B.90°C.120°D.150°
8.下列方程中,关于x的一元二次方程的是( )
A.x+=2B.ax2+bx+c=0
C.(x﹣2)(x﹣3)=0D.2x2+y=1
9.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A.B.C.D.
10.如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有( )个
A.B.C.D.
11.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有( )
A.2条B.4条
C.5条D.6条
12.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如果等腰△ABC中,,,那么______.
14.如图,将一个顶角为30°角的等腰△ABC绕点A顺时针旋转一个角度α(0<α<180°)得到△AB'C′,使得点B′、A、C在同一条直线上,则α等于_____°.
15.等边三角形中,,将绕的中点逆时针旋转,得到,其中点的运动路径为,则图中阴影部分的面积为__________.
16.若二次函数的图象经过点(3,6),则
17.不等式组的整数解的和是__________.
18.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.
三、解答题(共78分)
19.(8分)如图,港口位于港口的南偏西方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正东方向处,它沿正北方向航行到达处,侧得灯塔在北偏西方向上.求此时海轮距离港口有多远?
20.(8分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).
(1)求点A的坐标.
(2)求抛物线的表达式.
(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.
21.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,6),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)当C为抛物线顶点的时候,求的面积.
(3)是否存在质疑的点P,使的面积有最大值,若存在,求出这个最大值,若不存在,请说明理由.
22.(10分)当时,求的值.
23.(10分)如图,在中, , 在,上取一点,以为直径作,与相交于点,作线段的垂直平分线交于点,连接.
(1) 求证:是的切线;
(2)若,的半径为.求线段与线段的长.
24.(10分)解方程:x(x﹣3)+6=2x.
25.(12分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
26.(12分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.
(1)求该抛物线的解析式;
(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;
(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、B
5、B
6、C
7、C
8、C
9、B
10、D
11、D
12、D
二、填空题(每题4分,共24分)
13、;
14、1°
15、
16、.
17、
18、.
三、解答题(共78分)
19、海轮距离港口的距离为
20、(1)点A坐标为(4,0);(2)y=x2﹣x﹣2;(3)m=2或1+或1﹣.
21、(1);(2)(3)存在,(m为点P的横坐标)当m=时,
22、
23、(1)见解析;(2)
24、x1=2,x2=1.
25、第二个月的单价应是70元.
26、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.
相关试卷
这是一份湖北省孝感市孝南区八校2023-2024学年九上数学期末经典试题含答案,共7页。试卷主要包含了如果,那么的值为,已知二次函数的图象等内容,欢迎下载使用。
这是一份2023-2024学年湖北省武汉市东湖高新区九上数学期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中是一元二次方程的是,下列命题是真命题的个数是等内容,欢迎下载使用。
这是一份2023-2024学年湖北省麻城思源学校九上数学期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的解为,下列说法中正确的是等内容,欢迎下载使用。