湖北省武汉市七一中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).
A.B.C.D.
2.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是
A.B.C.D.
3.抛物线,下列说法正确的是( )
A.开口向下,顶点坐标B.开口向上,顶点坐标
C.开口向下,顶点坐标D.开口向上,顶点坐标
4.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
A.30°B.45°C.60°D.40°
5.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=( )
A.80°B.70°C.60°D.50°
6.如图,在中,若,则的长是( )
A.B.C.D.
7.如图,在△ABC中,DE∥BC,若=,则的值为( )
A.B.C.D.
8.用配方法解下列方程时,配方有错误的是( )
A.化为B.化为
C.化为D.化为
9.如图,在△中,∥,如果,,,那么的值为( )
A.B.C.D.
10.过反比例函数图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为( )
A.-6B.-3C.3D.6
11.如图,,两条直线与这三条平行线分别交于点、、和、、,若,则的值为( )
A.B.C.D.
12.如图, 抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为
A.1 个B.2 个C.3 个D.4 个
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,直角三角形的直角顶点与原点O重合,顶点A,B恰好分别落在函数,的图象上,则tan∠ABO的值为___________
14.一组数据:2,5,3,1,6,则这组数据的中位数是________.
15.计算:=_____________
16.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.
17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据函数图象,可以写出一系列的正确结论,如:a>0;b<0;c<0;对称轴为直线x=1;…请你再写出该函数图象的一个正确结论:_____.
18.若,且,则的值是__________.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.
(1)求抛物线的解析式;
(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;
(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;
(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
20.(8分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450 ,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果精确到0.1m, )
21.(8分)已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.
(1)如图甲,求证:;
(2)如图乙,连接,若,,求的值.
22.(10分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.
23.(10分)如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.
求抛物线的函数表达式:
若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.
如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.
24.(10分)某厂生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多1500元.
(1)求甲、乙商品的出厂单价分别是多少?
(2)某销售商计划购进甲商品200件,购进乙商品的数量是甲的4倍.恰逢该厂正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该销售商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该销售商购进乙的数量比原计划少了.结果该销售商付出的总货款与原计划的总货款恰好相同,求的值.
25.(12分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.
(1)填空:点B的坐标为 (用含m的代数式表示);
(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:
①求抛物线的解析式(用含m的代数式表示);
②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.
26.(12分)画出抛物线y=﹣(x﹣1)2+5的图象(要求列表,描点),回答下列问题:
(1)写出它的开口方向,对称轴和顶点坐标;
(2)当y随x的增大而增大时,写出x的取值范围;
(3)若抛物线与x轴的左交点(x1,0)满足n≤x1≤n+1,(n为整数),试写出n的值.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、C
4、A
5、D
6、B
7、A
8、C
9、B
10、D
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、3
15、-1
16、﹣1
17、4a+2b+c<1
18、-2
三、解答题(共78分)
19、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.
20、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.
21、(1)证明见解析;(2).
22、的长是
23、;;四边形可以为正方形,
24、(1)甲商品的出厂单价为900元/件,乙商品的出厂单价为600元/件;(2)的值为1.
25、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.
26、列表画图见解析;(1)开口向上,对称轴是直线x=1,顶点坐标为(1,5);(2)x<1;(1)n=﹣1
湖北省武汉市七一(华源)中学2023-2024学年数学九上期末学业质量监测模拟试题含答案: 这是一份湖北省武汉市七一(华源)中学2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知,二次函数与坐标轴的交点个数是等内容,欢迎下载使用。
湖北省武汉市江岸区武汉七一华源中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份湖北省武汉市江岸区武汉七一华源中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔,如图,在中,,,等内容,欢迎下载使用。
2023-2024学年湖北省武汉市武汉七一中学数学九年级第一学期期末考试试题含答案: 这是一份2023-2024学年湖北省武汉市武汉七一中学数学九年级第一学期期末考试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知分式的值为0,则的值是,下列事件中,是必然事件的是,下列说法不正确的是等内容,欢迎下载使用。