湖北荆门2023-2024学年九上数学期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.若反比例函数的图像经过点,则下列各点在该函数图像上的为( )
A.B.C.D.
2.下列事件是不可能发生的是( )
A.随意掷一枚均匀的硬币两次,至少有一次反面朝上
B.随意掷两个均匀的骰子,朝上面的点数之和为1
C.今年冬天黑龙江会下雪
D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域
3.如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若,则下列结论中一定正确的是( )
A.①和②相似B.①和③相似C.①和④相似D.③和④相似
4.下列图形中,既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
5.下列图形:①国旗上的五角星,②有一个角为60°的等腰三角形,③一个半径为π的圆,④两条对角线互相垂直平分的四边形,⑤函数y=的图象,其中既是轴对称又是中心对称的图形有( )
A.有1个B.有2个C.有3个D.有4个
6.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是( )
A.B.C.D.
7.如图,△ABC的顶点都是正方形网格中的格点,则cs∠ABC等于( )
A.B.C.D.
8.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是( )
A.①②③④B.①②③C.①②④D.②③④
9.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,前三天累计票房收入达10亿元,若设增长率为,则可列方程为( )
A.B.
C.D.
10.下列汽车标志图片中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
11.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是( )
A.B.C.D.
12.如图,AB,AM,BN 分别是⊙O 的切线,切点分别为 P,M,N.若 MN∥AB,∠A=60°,AB=6,则⊙O 的半径是( )
A.B.3C.D.
二、填空题(每题4分,共24分)
13.一个不透明的口袋中装有个红球和个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为__________.
14.如图,五边形是正五边形,若,则__________.
15.如图,路灯距离地面,身高的小明站在距离路灯底部(点)的点处,则小明在路灯下的影子长为_____.
16.小刚身高,测得他站立在阳光下的影子长为,紧接着他把手臂竖直举起,测得影子长为,那么小刚举起的手臂超出头顶的高度为________.
17.如图,已知射线,点从B点出发,以每秒1个单位长度沿射线向右运动;同时射线绕点顺时针旋转一周,当射线停止运动时,点随之停止运动.以为圆心,1个单位长度为半径画圆,若运动两秒后,射线与恰好有且只有一个公共点,则射线旋转的速度为每秒______度.
18.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.
三、解答题(共78分)
19.(8分)解方程:
(1);
(2).
20.(8分)平面直角坐标系中,函数(x>0),y=x-1,y=x-4的图象如图所示,p(a , b)是直线上一动点,且在第一象限.过P作PM∥x轴交直线于M,过P作PN∥y轴交曲线于N.
(1)当PM=PN时,求P点坐标
(2)当PM > PN时,直接写出a的取值范围.
21.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
22.(10分)如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.
23.(10分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.
(1)求该抛物线的函数解析式;
(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.
(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.
24.(10分)计算:2sin30°﹣cs45°﹣tan230°.
25.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
26.(12分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=1.
(1)求反比例函数和一次函数的解析式.
(1)连接OB,MC,求四边形MBOC的面积.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、B
5、C
6、C
7、B
8、B
9、D
10、C
11、A
12、D
二、填空题(每题4分,共24分)
13、
14、72
15、4
16、0.5
17、30或60
18、1
三、解答题(共78分)
19、(1),;(2),.
20、(1)(2,1)或(,);(2)
21、米.
22、cm
23、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)
24、﹣.
25、(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
26、(1)y=,y=1x+1;(1)四边形MBOC的面积是2.
湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份湖北荆门2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法中正确的是,对于二次函数y=2等内容,欢迎下载使用。
2023-2024学年湖北省荆门市京山市九上数学期末监测试题含答案: 这是一份2023-2024学年湖北省荆门市京山市九上数学期末监测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案: 这是一份2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了的倒数是,点P,关于的一元二次方程的根的情况是等内容,欢迎下载使用。