湖南省耒阳市冠湘学校2023-2024学年九上数学期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是( )
A.∠AED=∠BB.∠ADE=∠CC.D.
2.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是( )
A.x(x+1)=182 B.0.5x(x+1)=182
C.0.5x(x-1)=182 D.x(x-1)=182
3.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
4.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
A.B.
C.D.
5.已知m,n是关于x的一元二次方程的两个解,若,则a的值为( )
A.﹣10B.4C.﹣4D.10
6.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点( )
A.在圆上B.在圆内C.在圆外D.在圆上或在圆内
7.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为( )
A.2B.5C.7D.9
8. 如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有( )个.
A.1B.2C.3D.4
9.已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为( )
A.B.C.D.
10.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为( )
A.2B.3C.4D.5
11.已知一元二次方程,则该方程根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.两个根都是自然数D.无实数根
12.sin45°的值等于( )
A.B.C.D.1
二、填空题(每题4分,共24分)
13.如图,摆放矩形与矩形,使在一条直线上,在边上,连接,若为的中点,连接,那么与之间的数量关系是__________.
14.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .
15.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90和0.3,则动力(单位:)与动力臂(单位:)之间的函数解析式是__________.
16.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.
17.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.
18.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)
三、解答题(共78分)
19.(8分)如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).
(1)求B、C坐标;
(2)求证:BA⊥AC;
(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.
20.(8分)2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x元/千克,日销售量为y千克.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.
21.(8分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱.
22.(10分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
23.(10分)如图,直线与轴交于点(),与轴交于点,抛物线()经过,两点,为线段上一点,过点作轴交抛物线于点.
(1)当时,
①求抛物线的关系式;
②设点的横坐标为,用含的代数式表示的长,并求当为何值时,?
(2)若长的最大值为16,试讨论关于的一元二次方程的解的个数与的取值范围的关系.
24.(10分)如图,在正方形网格中,每个小正方形的边长均为 1 个单位.
(1)把△ABC绕着点C逆时针旋转 90°,画出旋转后对应的△A1B1C;
(2)求△ABC旋转到△A1B1C时线段AC扫过的面积.
25.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.
(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?
(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.
26.(12分)已知实数满足,求的值.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、A
4、A
5、C
6、B
7、B
8、D
9、A
10、D
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、1.
15、
16、(2,0) 相切
17、1
18、
三、解答题(共78分)
19、(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.
20、(1)y=200﹣2x;(2)售价是68元/千克时,日销售利润最大,最大利润是1元
21、1.
22、(1),函数的对称轴为:;(2)点;(3)存在,点的坐标为或.
23、(1)①;②;当x=1或x=4时,;(1)当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解.
24、(1)见解析;(2)2π
25、(1);(2),见解析
26、,2.
湖南省耒阳市冠湘中学2023-2024学年九上数学期末调研试题含答案: 这是一份湖南省耒阳市冠湘中学2023-2024学年九上数学期末调研试题含答案,共8页。试卷主要包含了答题时请按要求用笔,关于的方程的根的情况,正确的是等内容,欢迎下载使用。
湖南省耒阳市冠湘中学2023-2024学年数学八上期末统考试题含答案: 这是一份湖南省耒阳市冠湘中学2023-2024学年数学八上期末统考试题含答案,共7页。试卷主要包含了已知等内容,欢迎下载使用。
2023-2024学年湖南省耒阳市冠湘学校八年级数学第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年湖南省耒阳市冠湘学校八年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列各式运算正确的是,给出下列四组条件,8的平方根为等内容,欢迎下载使用。