湖南师大附中2023-2024学年数学九上期末达标测试试题含答案
展开
这是一份湖南师大附中2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了抛物线与y轴的交点坐标是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为( )
A.B.C.D.
2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.B.C.D.
3.如图,在平行四边形中,,,那么的值等于( )
A.B.C.D.
4.某校为了了解九年级学生的体能情况,随机抽取了 名学生测试 1分钟仰卧起坐的 次数, 统计结果并绘制成如图所示的频数分布直方图. 已知该校九年级共有名学 生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是( )
A.B.
C.D.
5.二次函数 (m是常数),当时,,则m的取值范围为( )
A.m<0B.m<1C.0<m<1D.m>1
6.如图,PA、PB都是⊙O的切线,切点分别为A、B. 四边形ACBD内接于⊙O,连接OP 则下列结论中错误的是( )
A.PA=PBB.∠APB+2∠ACB=180°
C.OP⊥ABD.∠ADB=2∠APB
7.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为( )
A.B.C.D.
8.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A.B.C.D.
9.抛物线与y轴的交点坐标是( )
A.(4,0)B.(-4,0)C.(0,-4)D.(0,4)
10.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A.B.C.D.
11.如图,四边形和是以点为位似中心的位似图形,若,则四边形与四边形的面积比为( )
A.B.C.D.
12.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年 的年利率不变,到期后取出2750元,则年利率为__________.
14.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.
15.如图,河的两岸、互相平行,点、、是河岸上的三点,点是河岸上一个建筑物,在处测得,在处测得,若米,则河两岸之间的距离约为______米(,结果精确到0.1米)(必要可用参考数据:)
16.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.
17.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.
18.不等式组的整数解的和是__________.
三、解答题(共78分)
19.(8分)(1)解方程:
(2)如图,四边形是的内接四边形,若,求的度数.
20.(8分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.
(1)求甲、乙两工程队每天能完成塑胶改造的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;
(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.
21.(8分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?
22.(10分)当时,求的值.
23.(10分)如图所示的双曲线是函数为常数,)图象的一支若该函数的图象与一次函数的图象在第一象限的交点为,求点的坐标及反比例函数的表达式.
24.(10分)(1)解方程
(2)计算
25.(12分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.
(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;
(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;
(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.
26.(12分)在中,,点在边上运动,连接,以为一边且在的右侧作正方形.
(1)如果,如图①,试判断线段与之间的位置关系,并证明你的结论;
(2)如果,如图②,(1)中结论是否成立,说明理由.
(3)如果,如图③,且正方形的边与线段交于点,设,,,请直接写出线段的长.(用含的式子表示)
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、D
4、B
5、D
6、D
7、C
8、C
9、D
10、C
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、
15、54.6
16、1
17、10
18、
三、解答题(共78分)
19、(1);(2)136°
20、 (1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.
21、(1)y=100x(的整数) y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.
22、
23、点的坐标为;反比例函数的表达式为.
24、(1);(2)1.
25、(1)BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由见解析;(3)AP=AM+PM=3.
26、(1);证明见解析; (2)成立;理由见解析;(3).
相关试卷
这是一份湖南长沙市师大附中教育集团2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份湖南省怀化市2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年湖南省凤凰县九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了一元二次方程的解为等内容,欢迎下载使用。