终身会员
搜索
    上传资料 赚现金
    备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式
    立即下载
    加入资料篮
    备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式01
    备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式02
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

    展开
    这是一份备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式,共5页。

    A.[-5, 3]B.[-3,5]C.[-6,4]D.[-4,6]
    解析 解法一(极化恒等式) 设AB的中点为M,CM与CP的夹角为θ,由极化恒等式得PA·PB=PM2-14AB2=(CM-CP)2-254=CM2+CP2-2CM·CPcs θ-254=254+1-5cs θ-254=1-5cs θ,因为cs θ∈[-1,1],所以PA·PB∈[-4,6].
    解法二 以C为坐标原点,CA,CB所在直线分别为x轴,y轴建立平面直角坐标系,则
    A(3,0),B(0,4),设P(x,y),则x2+y2=1,PA=(3-x,-y),PB=
    (-x,4-y),所以PA·PB=x2-3x+y2-4y=(x-32)2+(y-2)2-254,又(x-32)2+(y-2)2表示圆x2+y2=1上一点到点(32,2)距离的平方,圆心(0,0)到点(32,2)的距离为52,所以PA·PB∈[(52-1)2-254,(52+1)2-254],即PA·PB∈[-4,6],故选D.
    解法三 以C为坐标原点,CA,CB所在直线分别为x轴,y轴建立平面直角坐标系,则
    A(3,0),B(0,4),因为PC=1,所以P在以(0,0)为圆心,1为半径的圆上,所以设点P坐标为(cs α,sin α),则PA·PB=(3-cs α,-sin α)·(-cs α,4-sin α)=1-3cs α-4sin α=1-5sin(α+φ)(其中tan φ=34).因为sin(α+φ)∈[-1,1],所以PA·PB∈[-4,6].
    (2)[全国卷Ⅱ]已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则PA·(PB+PC)的最小值是( B )
    A.-2B.-32C.-43D.-1
    解析 解法一 如图,取BC的中点D,则PB+PC=2PD,则PA·(PB+PC)=2PA·PD.在△PAD中,取AD的中点O,则2PA·PD=2|PO|2-12|AD|2=2|PO|2-32.
    由于点P在平面内是任意的,因此当且仅当点P,O重合时,|PO|取得最小值,即2PA·PD取得最小值-32.故选B.
    解法二 如图,以等边三角形ABC的底边BC的中点O为坐标原点,BC所在直线为x轴,BC的垂直平分线为y轴建立平面直角坐标系,则A(0,3),B(-1,0),C(1,0).
    设P(x,y),则PA=(-x,3-y),PB=(-1-x,-y),PC=(1-x,-y),所以PA·(PB+PC)=(-x,3-y)·(-2x,-2y)=2x2+2(y-32)2-32,易知当x=0,y=32时,PA·(PB+PC)取得最小值,最小值为-32.故选B.
    方法技巧
    极化恒等式:a·b=14[(a+b)2-(a-b)2].
    几何意义:向量a,b的数量积等于以这组向量所对应的线段为邻边的平行四边形的“和对角线长”与“差对角线长”的平方差的14.
    应用:(1)在▱ABCD中,O为AC,BD的交点,则有AB·AD=14(4|AO|2-4|OB|2)=|AO|2-|OB|2.
    (2)如图,在△ABC中,若M是BC的中点,则AB·AC=AM2-14BC2.
    训练4 [2023山东青岛二中5月模拟]如图,在四边形ABCD中,∠B=60°,AB=3,BC=6,且AD=λBC,AD·AB=-32,则实数λ的值为 16 ,若M,N是线段BC上的动点,且
    |MN|=1,则DM·DN的最小值为 132 .
    解析 依题意得AD∥BC,∠BAD=120°,由AD·AB=|AD|·|AB|·cs∠BAD=
    -32|AD|=-32,得|AD|=1,因此λ=|AD||BC|=16.取MN的中点E,连接DE,则DM+DN=2DE,DM·DN=14[(DM+DN)2-(DM-DN)2]=DE2-14NM2=DE2-14.注意到线段MN在线段BC上运动时,DE的最小值等于点D到直线BC的距离,即AB·sinB=332,因此DE2-14的最小值为(332)2-14=132,即DM·DN的最小值为132.
    思维帮·提升思维 快速解题
    三角形“四心”的向量表示与运用
    角度1 垂心的向量表示与运用
    例7 [2023山西朔州模拟]已知H为△ABC的垂心,若AH=13AB+25AC,则sin∠BAC= 63 .
    解析 如图,连接BH,CH,因为AH=13AB+25AC,所以BH=BA+AH=
    -23AB+25AC,CH=CA+AH=13AB-35AC.由H为△ABC的垂心,得BH·AC=0,即(-23AB+25AC)·AC=0,可知25|AC|2=23|AC|·|AB|cs∠BAC,即cs∠BAC=3|AC|5|AB| ①,同理有CH·AB=0,即(13AB-35AC)·AB=0,可知13|AB|2=35|AC||AB|cs∠BAC,即cs∠BAC=5|AB|9|AC| ②,①×②得cs2∠BAC=13,得sin2∠BAC=1-cs2∠BAC=1-13=23,又sin∠BAC>0,所以sin∠BAC=63.
    方法技巧
    1.垂心的定义:三角形三条高的交点称为该三角形的垂心.
    2.垂心的性质:设O是△ABC的垂心,P为△ABC所在平面内任意一点,则有(1)OA·OB=OB·OC=OC·OA;
    (2)|OA|2+|BC|2=|OB|2+|CA|2=|OC|2+|AB|2;
    (3)动点P满足AP=λ(AB|AB|cs∠ABC+AC|AC|cs∠ACB)或OP=OA+λ(AB|AB|cs∠ABC+AC|AC|cs∠ACB),λ∈R时,动点P的轨迹经过△ABC的垂心.
    角度2 重心的向量表示与运用
    例8 [2023广州一中诊断]如图,已知点G是△ABC的重心,过G作直线与AB,AC分别交于M,N两点,AM=xAB,AN=yAC,则xyx+y= 13 .
    解析 由M,G,N三点共线得,存在实数λ使得AG=λAM+(1-λ)AN=xλAB+y(1-λ)AC,且0<λ<1.
    因为G是△ABC的重心,所以AG=13(AB+AC),所以xλ=13,y(1-λ)=13,则x=13λ,y=13(1-λ),故xy=19λ(1-λ),x+y=13λ(1-λ),则xyx+y=19λ(1-λ)×3λ(1-λ)=13.
    方法技巧
    1.重心的定义:三角形三条中线的交点称为该三角形的重心.
    2.重心的性质:设O是△ABC的重心,P为平面内任意一点,则有(1)OA+OB+OC=0;(2)PO=13(PA+PB+PC);(3)动点P满足AP=λ(AB+AC)或OP=OA+
    λ(AB+AC),λ∈[0,+∞)时,动点P的轨迹经过△ABC的重心.
    角度3 外心的向量表示与运用
    例9 [2023湖北荆门模拟]已知点O为△ABC所在平面内一点,在△ABC中,满足2AB·AO=|AB|2,2AC·AO=|AC|2,则点O为该三角形的( B )
    A.内心B.外心C.垂心D.重心
    解析 因为2AB·AO=2|AB||AO|cs∠OAB=|AB|2,所以|AO|cs∠OAB=
    12|AB|,则向量AO在向量AB上的投影向量的长度为|AB|的一半,所以点O在边AB的中垂线上,同理,点O在边AC的中垂线上,所以点O为该三角形的外心,故选B.
    方法技巧
    1.外心的定义:三角形三边垂直平分线的交点称为该三角形的外心.
    2.外心的性质:若O是△ABC的外心,则有(1)|OA|=|OB|=|OC|;
    (2)(OA+OB)·AB=(OA+OC)·AC=(OB+OC)·BC=0.
    角度4 内心的向量表示与运用
    例10 [2023四川南充阶段测试]已知O是△ABC所在平面内一点,且点O满足OA·(AB|AB|-AC|AC|)=OB·(BA|BA|-BC|BC|)=OC·(CA|CA|-CB|CB|)=0,则点O为△ABC的( C )
    A.外心B.重心C.内心D.垂心
    解析 解法一 AB|AB|,AC|AC|分别是与AB,AC方向相同的单位向量,可令AB|AB|=AD,AC|AC|=AE,连接ED,则△ADE为腰长是1的等腰三角形,AB|AB|-AC|AC|=ED,所以OA·ED=0,所以AO为∠CAB的平分线,同理BO为∠ABC的平分线,CO为∠ACB的平分线,所以O为△ABC的内心.故选C.
    解法二 OA·(AB|AB|-AC|AC|)=0,即OA·AB|AB|=OA·AC|AC|,即|OA|·|AB||AB|cs(π-∠OAB)=|OA|·|AC||AC|·cs(π-∠OAC),所以∠OAB=∠OAC,即AO是∠BAC的平分线,同理可得BO为∠ABC的平分线,CO为∠ACB的平分线,所以O为△ABC的内心.
    方法技巧
    1.内心的定义:三角形三条内角平分线的交点称为该三角形的内心.
    2.内心的性质:若O是△ABC的内心,P为平面内任意一点,则有(1)aOA+bOB+cOC=0(a,b,c分别是△ABC的三边BC,AC,AB的长);(2)动点P满足AP=λ(AB|AB|+AC|AC|)或OP=OA+λ(AB|AB|+AC|AC|),λ∈[0,+∞)时,动点P的轨迹经过△ABC的内心.
    训练5 (1)[2023长春模拟]点O是平面α上一定点,点P是平面α上一动点,A,B,C是平面α上△ABC的三个顶点(点O,P,A,B,C均不重合),以下命题正确的是 ①②③④ .
    ①动点P满足OP=OA+PB+PC,则△ABC的重心一定在满足条件的P点的集合中;
    ②动点P满足OP=OA+λ(AB|AB|+AC|AC|)(λ>0),则△ABC的内心一定在满足条件的P点的集合中;
    ③动点P满足OP=OA+λ(AB|AB|sinB+AC|AC|sinC)(λ>0),则△ABC的重心一定在满足条件的P点的集合中;
    ④动点P满足OP=OA+λ(AB|AB|csB+AC|AC|csC)
    (λ∈R),则△ABC的垂心一定在满足条件的P点的集合中.
    解析 对于①,OP=OA+PB+PC,移项得-OA+OP=AP=PB+PC,即PA+PB+PC=0,则点P是△ABC的重心,故①正确.
    对于②,因为动点P满足OP=OA+λ(AB|AB|+AC|AC|)(λ>0),移项得AP=λ(AB|AB|+AC|AC|)(λ>0),所以AP与∠BAC的平分线对应的向量共线,所以P在∠BAC的平分线上,所以△ABC的内心在满足条件的P点的集合中,②正确.
    对于③,OP=OA+λ(AB|AB|sinB+AC|AC|sinC)(λ>0),即AP=λ(AB|AB|sinB+AC|AC|sinC),过点A作AD⊥BC,垂足为D,则|AB|sin B=|AC|sin C=AD,AP=λAD(AB+AC),设M为BC的中点,则AB+AC=2AM,则AP=2λADAM,所以P在BC的中线上,所以△ABC的重心一定在满足条件的P点的集合中,③正确.
    对于④,OP=OA+λ(AB|AB|csB+AC|AC|csC)(λ∈R),即AP=λ(AB|AB|csB+AC|AC|csC),所以AP·BC=λ(AB·BC|AB|csB+AC·BC|AC|csC)=λ(-|BC|+|BC|)=0,所以AP⊥BC,所以P在边BC上的高所在的直线上,所以△ABC的垂心一定在满足条件的P点的集合中,④正确.故正确的命题是①②③④.
    (2)[多选/2023安徽淮北师大附中模拟]数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的重心、垂心和外心共线.这条线就是三角形的欧拉线.在△ABC中,O,H,G分别是外心、垂心和重心,D为BC边的中点,则下列四个选项中正确的是( ABD )
    A.GH=2OGB.GA+GB+GC=0
    C.AH=ODD.S△ABG=S△BCG=S△ACG
    解析 根据题意画出图形,如图所示.
    对于B,连接GD,由重心的性质可得G为AD的三等分点,且GA=-2GD,又D为BC的中点,所以GB+GC=2GD,所以GA+GB+GC=-2GD+2GD=0,故B正确.
    对于A,C,因为O为△ABC的外心,D为BC的中点,所以OD⊥BC,所以AH∥OD,所以△AHG∽△DOG,所以GHOG=AHOD=AGDG=2,即GH=2OG,AH=2OD,故A正确,C不正确.
    对于D,延长AH交BC于N,过点G作GE⊥BC,垂足为E,则△DEG∽△DNA,所以GEAN=DGDA=13,所以S△BGC=12×BC×GE=12×BC×13×AN=13S△ABC,同理,S△AGC=S△AGB=13S△ABC,所以S△ABG=S△BCG=S△ACG,故D正确.故选ABD.
    相关试卷

    备考2024届高考数学一轮复习分层练习第六章平面向量复数第3讲平面向量的数量积及应用: 这是一份备考2024届高考数学一轮复习分层练习第六章平面向量复数第3讲平面向量的数量积及应用,共5页。试卷主要包含了[多选]已知向量a=等内容,欢迎下载使用。

    备考2024届高考数学一轮复习强化训练第六章平面向量复数第4讲余弦定理正弦定理射影定理的应用: 这是一份备考2024届高考数学一轮复习强化训练第六章平面向量复数第4讲余弦定理正弦定理射影定理的应用,共1页。

    备考2024届高考数学一轮复习强化训练第六章平面向量复数第1讲平面向量的概念及线性运算: 这是一份备考2024届高考数学一轮复习强化训练第六章平面向量复数第1讲平面向量的概念及线性运算,共1页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备考2024届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map