- 备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点3最值与范围问题 试卷 0 次下载
- 备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点2轨迹问题 试卷 0 次下载
- 备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破2空间几何体的截面交线问题命题点1截面的形状问题 试卷 0 次下载
- 备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破2空间几何体的截面交线问题命题点3截面的交线问题 试卷 0 次下载
- 备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破2空间几何体的截面交线问题 试卷 0 次下载
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破4立体几何中的翻折问题与探索性问题命题点1翻折问题
展开例1 [全国卷Ⅲ]图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE.
(2)求图2中的二面角B-CG-A的大小.
图 1图2
解析 (1)由已知得AD∥BE,CG∥BE,(位于“折痕”同侧的点、线、面之间的位置关系不变)
所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.
由已知得AB⊥BE,AB⊥BC,(与“折痕”垂直的线段,翻折前后垂直关系不变)
又BC∩BE=B,BC,BE⊂平面BCGE,故AB⊥平面BCGE.
又AB⊂平面ABC,所以平面ABC⊥平面BCGE.
(2)如图,作EH⊥BC,垂足为H.因为EH⊂平面BCGE,平面BCGE⊥平面ABC,平面ABC∩平面BCGE=BC,所以EH⊥平面ABC.
由题设知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=3.
以H为坐标原点,HC的方向为x轴的正方向,建立如图所示的空间直角坐标系,
则A(-1,1,0),C(1,0,0),G(2,0,3),CG=(1,0,3),AC=(2,-1,0).
设平面ACGD的法向量为n=(x,y,z),则CG·n=0,AC·n=0,即x+3z=0,2x-y=0,
所以可得平面ACGD的一个法向量为n=(3,6,-3).
易知m=(0,1,0)为平面BCGE的一个法向量,
则cs<n,m>=n·m|n||m|=32.
由图可知二面角B-CG-A为锐角,因此二面角B-CG-A的大小为30°.
方法技巧
1.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化.
注意 利用折叠前的平面图计算长度.
2.(1)与折痕垂直的线段,翻折前后垂直关系不改变(常用于翻折后构成二面角的平面角);
(2)与折痕平行的线段,翻折前后平行关系不改变.
训练1 已知矩形ABCD中,AB=2,BC=22,将△ABD沿矩形的对角线BD所在的直线翻折到△A'BD的位置(A'不在平面ABCD内),则在翻折过程中,下列说法正确的是( B )
A.存在某个位置,使得直线BD与直线A'C垂直
B.存在某个位置,使得直线A'B与直线CD垂直
C.存在某个位置,使得直线BC与直线A'D垂直
D.对任意位置,三对直线“A'C与BD”“CD与A'B”“A'D与BC”均不相互垂直
解析 翻折前、后的图形如图1、图2所示.在图1中,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F,由边AB,BC不相等可知点E,F不重合.在图2中,连接CE.
对于选项A,若A'C⊥BD,因为BD⊥A'E,A'E∩A'C=A',所以BD⊥平面A'CE.因为CE⊂平面A'CE,所以BD⊥CE,与点E,F不重合相矛盾,故选项A错误.对于选项B,若A'B⊥CD,因为A'B⊥A'D,A'D∩CD=D,所以A'B⊥平面A'DC.因为A'C⊂平面A'DC,所以A'B⊥A'C,由A'B<BC可知存在这样的三角形,使得直线A'B与直线CD垂直,此时A'B=A'C=2,故选项B正确.对于选项C,若A'D⊥BC,因为DC⊥BC,A'D∩DC=D,所以BC⊥平面A'DC.因为A'C⊂平面A'DC,所以BC⊥A'C,又BC>A'B,所以不存在这样的直角三角形,故选项C错误.由以上分析可知选项D错误.故选B.
训练2 [2023昆明市模拟]如图1,在梯形ABCD中,AB∥CD,AB=AD=12CD,∠ADC=120°,E为CD的中点,将△ADE沿AE翻折,使点D落到点P的位置,如图2.
图1图2
(1)证明:PB⊥AE.
(2)当二面角P-AE-B等于90°时,求PA与平面PEC所成角的正弦值.
解析 (1)如图,取AE的中点O,连接PO,BO,BE.
由题意及题图1知,DA=DE=AB=BE,
又PA=DA,PE=DE,所以PA=PE.
所以PO⊥AE,BO⊥AE,
又PO∩BO=O,所以AE⊥平面POB.
因为PB⊂平面POB,所以AE⊥PB,即PB⊥AE.
(2)因为二面角P-AE-B等于90°,
所以平面PAE⊥平面ABCE,
又平面PAE∩平面ABCE=AE,PO⊥AE,所以PO⊥平面ABCE,所以OA,OB,OP两两垂直.
以O为坐标原点,OA,OB,OP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,不妨设AB=2,由已知得∠APE=120°,所以OP=OB=1,OA=OE=3,
则P(0,0,1),A(3,0,0),C(-23,1,0),E(-3,0,0),PA=(3,0,-1),EP=(3,0,1),EC=(-3,1,0).
设平面PEC的法向量为n=(x,y,z),
则EP·n=0,EC·n=0,即3x+z=0,-3x+y=0,
令x=1,则y=3,z=-3,所以平面PEC的一个法向量为n=(1,3,-3).
设PA与平面PEC所成的角为θ,
则sin θ=|cs<PA,n>|=|232×7|=217,
即PA与平面PEC所成角的正弦值为217.
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点3最值与范围问题: 这是一份备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点3最值与范围问题,共1页。
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点2轨迹问题: 这是一份备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破3立体几何中的动态问题命题点2轨迹问题,共2页。
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破4立体几何中的翻折问题与探索性问题: 这是一份备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破4立体几何中的翻折问题与探索性问题,共8页。