备战2024年高考数学二轮专题复习56个高频考点专练53 条件概率、全概率公式、相互独立事件的概率
展开一、选择题
1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现反面”为事件B,则P(B|A)=( )
A. eq \f(1,2) B. eq \f(1,4)
C. eq \f(1,6) D. eq \f(1,8)
2.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”;则P(B|A)=( )
A. eq \f(1,8) B. eq \f(1,4)
C. eq \f(2,5) D. eq \f(1,2)
3.打靶时甲每打10次,可中靶8次;乙每打10次可中靶7次,若两人同时射击一个目标,则他们都中靶的概率是( )
A. eq \f(3,5) B. eq \f(3,4)
C. eq \f(12,25) D. eq \f(14,25)
4.[2023·山东栖霞模拟]一道竞赛题,A,B,C三人单独解出的概率依次为 eq \f(1,2) , eq \f(1,3) , eq \f(1,4) ,则三人独立解答仅有1人解出的概率为( )
A. eq \f(1,24) B. eq \f(11,24)
C. eq \f(7,24) D.1
5.[2023·山东济南模拟]已知某种生物由出生算起活到20岁的概率是0.8,活到25岁的概率是0.4,则现为20岁的这种动物活到25岁的概率是( )
A.0.6 B.0.5
C.0.4 D.0.32
6.5G指的是第五代移动通信技术,是最新一代蜂窝移动通信技术.某公司研发5G项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为( )
B.0.86
D.0.96
7.[2023·全国甲卷(理)]某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A.0.8 B.0.6
C.0.5 D.0.4
8.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为 eq \f(1,3) , eq \f(1,2) , eq \f(2,3) ,则汽车在这三处因遇红灯而停车一次的概率为( )
A. eq \f(1,9) B. eq \f(1,6)
C. eq \f(1,3) D. eq \f(7,18)
9.(多选)[2023·新课标Ⅱ卷]在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率
二、填空题
10.某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8,则王同学第2天去A餐厅用餐的概率为________.
11.已知甲、乙两球落入盒子的概率分别为 eq \f(1,2) 和 eq \f(1,3) .假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.
12.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.
[能力提升]
13.[2021·新高考Ⅰ卷]有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
14.(多选)从甲口袋内摸出1个白球的概率是 eq \f(1,3) ,从乙口袋内摸出1个白球的概率是 eq \f(1,2) ,如果从两个口袋内各摸出一个球,那么下列说法正确的是( )
A.2个球都是白球的概率为 eq \f(1,6)
B.2个球都不是白球的概率为 eq \f(2,3)
C.2个球不都是白球的概率为 eq \f(5,6)
D.2个球恰好有一个球是白球的概率为 eq \f(1,2)
15.[2022·全国乙卷(理),10]某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关
B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大
D.该棋手在第二盘与丙比赛,p最大
16.(多选)设同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A={第一个四面体向下的一面为偶数},事件B={第二个四面体向下的一面为奇数},C={两个四面体向下的一面同时为奇数或者同时为偶数},则下列说法正确的是( )
A.P(A)=P(B)=P(C)
B.P(AB)=P(AC)=P(BC)
C.P(ABC)= eq \f(1,8)
D.P(A)P(B)P(C)= eq \f(1,8)
考点巩固卷24 古典概型、相互独立、条件概率及全概率公式(七大考点)-备战2024年高考数学一轮复习高分突破(新高考通用): 这是一份考点巩固卷24 古典概型、相互独立、条件概率及全概率公式(七大考点)-备战2024年高考数学一轮复习高分突破(新高考通用),文件包含考点巩固卷24古典概型相互独立条件概率及全概率公式七大考点原卷版docx、考点巩固卷24古典概型相互独立条件概率及全概率公式七大考点解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
高考数学一轮复习课时分层作业60事件的相互独立性、条件概率与全概率公式含答案: 这是一份高考数学一轮复习课时分层作业60事件的相互独立性、条件概率与全概率公式含答案,文件包含高考数学一轮复习课时分层作业60事件的相互独立性条件概率与全概率公式含答案docx、高考数学一轮复习课时分层作业60参考答案docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
(新高考)高考数学一轮复习讲练测第10章§10.5事件的相互独立性与条件概率、全概率公式(含解析): 这是一份(新高考)高考数学一轮复习讲练测第10章§10.5事件的相互独立性与条件概率、全概率公式(含解析),共14页。试卷主要包含了了解两个事件相互独立的含义,8两,诱发某种疾病的频率为0等内容,欢迎下载使用。