备战2024年高考数学二轮专题复习56个高频考点专练54 二项分布、超几何分布与正态分布
展开一、选择题
1.随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=0.2,P(2<ξ<6)=0.6,则μ=( )
A.6 B.5
C.4 D.3
2.已知X+Y=8,若X~B(10,0.6),则E(Y)和D(Y)分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
3.设随机变量X~N(2,4),若P(X>a+2)=P(X<2a-3),则实数a的值为( )
A.1 B. eq \f(5,3)
C.5 D.9
4.[2023·山东威海模拟]设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则p=( )
A. eq \f(1,5) B. eq \f(1,4)
C. eq \f(1,3) D. eq \f(2,5)
5.一个袋子中有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取得一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是( )
A. eq \f(13,35) B. eq \f(14,35)
C. eq \f(18,35) D. eq \f(22,35)
6.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 eq \f(1,3) ,乙获胜的概率为 eq \f(2,3) ,各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( )
A. eq \f(17,81) B. eq \f(56,81)
C. eq \f(64,81) D. eq \f(25,81)
7.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=( )
A.0.7 B.0.6
C.0.4 D.0.3
8.设X~N(μ1,σ eq \\al(\s\up1(2),\s\d1(1)) ),Y~N(μ2,σ eq \\al(\s\up1(2),\s\d1(2)) ),这两个正态分布密度曲线如图所示.下列结论中正确的是( )
A.P(Y≥μ2)≥P(Y≥μ1)
B.P(X≤σ2)≤P(X≤σ1)
C.对任意正数t,P(X≤t)≥P(Y≤t)
D.对任意正数t,P(X≥t)≥P(Y≥t)
9.(多选)某市有A,B,C,D四个景点,一位游客来该市游览,已知该游客游览A的概率为 eq \f(2,3) ,游览B,C和D的概率都是 eq \f(1,2) ,且该游客是否游览这四个景点相互独立,用随机变量X表示该游客游览的景点的个数,下列正确的是( )
A.游客至多游览一个景点的概率 eq \f(1,4)
B.P(X=2)= eq \f(3,8)
C.P(X=4)= eq \f(1,24)
D.E(X)= eq \f(13,6)
二、填空题
10.已知随机变量X~B(n,p),若E(X)=30,D(X)=20,则p=________.
11.随机变量X~N(3,σ2),且P(0
12.在我校高三高考调研中,数学成绩X~N(90,σ2)(σ>0),统计结果显示P(60≤X≤120)=0.8,假设我校参加此次考试的有780人,那么估计此次考试中,我校成绩高于120分的有________人.
[能力提升]
13.(多选)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高X(单位:cm)服从正态分布,其密度函数为f(x)= eq \f(1,10\r(2π)) ·e- eq \f((x-100)2,200) ,x∈(-∞,+∞),则下列说法正确的是( )
A.该地水稻的平均株高为100 cm
B.该地水稻株高的方差为10
C.随机测量一株水稻,其株高在120 cm以上的概率比株高在70 cm以下的概率大
D.随机测量一株水稻,其株高在(80,90)和在(100,110)之间的概率一样大
14.(多选)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( )
A.四人去了四个不同餐厅就餐的概率为 eq \f(5,18)
B.四人去了同一餐厅就餐的概率为 eq \f(1,1 296)
C.四人中恰有两人去了第一餐厅就餐的概率为 eq \f(25,216)
D.四人中去第一餐厅就餐的人数的均值为 eq \f(2,3)
15.2012年国家开始实行法定节假日高速公路免费通行政策,某收费站在统计了2023年清明节前后车辆通行数量,发现该站近几天每天通行车辆的数量ξ服从正态分布ξ~N(1 000,σ2),若P(ξ>1 200)=a,P(800<ξ<1 000)=b,则 eq \f(1,a) + eq \f(9,b) 的最小值为________.
一个口袋里装有大小相同的5个小球,其中红色有2个,其余3个颜色各不相同.现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是________;若变量X为取出的三个小球中红球的个数,则X的数学期望E(X)=________
备战2024年高考数学二轮专题复习56个高频考点专练46 双曲线: 这是一份备战2024年高考数学二轮专题复习56个高频考点专练46 双曲线,共3页。
备战2024年高考数学二轮专题复习56个高频考点专练45 椭圆: 这是一份备战2024年高考数学二轮专题复习56个高频考点专练45 椭圆,共3页。
备战2024年高考数学二轮专题复习56个高频考点专练33 高考大题专练(三) 数列的综合运用: 这是一份备战2024年高考数学二轮专题复习56个高频考点专练33 高考大题专练(三) 数列的综合运用,共2页。