终身会员
搜索
    上传资料 赚现金
    (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)
    立即下载
    加入资料篮
    (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)01
    (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)02
    (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)03
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)

    展开
    这是一份(沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析),共41页。

    专题5.2 函数的基本性质一、考情分析二、考点梳理1、函数的单调性(1)单调函数的定义 (2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2、函数的最值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值.3、函数单调性的常用结论(1)若均为区间A上的增(减)函数,则也是区间A上的增(减)函数;(2)若,则与的单调性相同;若,则与的单调性相反;(3)函数在公共定义域内与,的单调性相反;(4)函数在公共定义域内与的单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反;(6)一些重要函数的单调性:①的单调性:在和上单调递增,在和上单调递减;②(,)的单调性:在和上单调递增,在和上单调递减.4、函数的奇偶性(1).函数奇偶性的定义及图象特点判断与的关系时,也可以使用如下结论:如果或,则函数为偶函数;如果或,则函数为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2),在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括,则.(4)若函数是偶函数,则.(5)定义在上的任意函数都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数的定义域关于原点对称,则为偶函数,为奇函数,为偶函数.(7)掌握一些重要类型的奇偶函数:①函数为偶函数,函数为奇函数.②函数(且)为奇函数.③函数(且)为奇函数.④函数(且)为奇函数.5、函数的周期性1.周期函数对于函数,如果存在一个非零常数T,使得当x取定义域内的任何值时,都有,那么就称函数为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数的所有周期中存在一个最小的正数,那么这个最小的正数就叫做的最小正周期(若不特别说明,一般都是指最小正周期).注意:并不是所有周期函数都有最小正周期.3.函数周期性的常用结论设函数,.①若,则函数的周期为;②若,则函数的周期为;③若,则函数的周期为;④若,则函数的周期为;⑤函数关于直线与对称,那么函数的周期为 ;⑥若函数关于点对称,又关于点对称,则函数的周期是;⑦若函数关于直线对称,又关于点对称,则函数的周期是;⑧若函数是偶函数,其图象关于直线对称,则其周期为;⑨若函数是奇函数,其图象关于直线对称,则其周期为6.奇偶函数图象的对称性①若是偶函数,则的图象关于直线对称;②若是偶函数,则的图象关于点中心对称;三、题型突破重难点1 判断或证明函数的单调性1.(单调性不能混合乘除)复合函数的单调性①增函数+增函数=增函数,减函数+减函数=减函数;②增函数-减函数=增函数,减函数-增函数=减函数;③如果是增函数,那么是减函数,也是减函数。2.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对或进行适当变形,进而比较出与的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减.(4)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.3.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(1)、(2023·上海·高一专题练习)下列函数中,在是增函数的是( )A. B. C. D.(2).(2023·全国高三专题练习)已知函数在区间上是增函数,则的取值范围  A. B. C. D.【变式训练1-1】、(2023·全国)函数在区间上单调递增,则的取值范围是( )A. B.C. D.【变式训练1-2】.(2023·宁夏贺兰县景博中学高二期末(文))若函数,是定义在上的减函数,则的取值范围为( )A. B.C. D.例2.(2023·全国高一课时练习)函数在R上为增函数,且,则实数m的取值范围是A. B.C. D.【变式训练2-1】..(2023·江西省兴国县第三中学高一月考)函数 ,则满足<的取值范围是 A. B.[ ,)C.(,) D.[,) 重难点2 判断或证明函数的奇偶性1.(奇偶性不能混合加减)复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数奇函数=偶函数,奇函数偶函数=奇函数,偶函数偶函数=偶函数;2.判断函数奇偶性的常用方法及思路:(1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围相应地化简解析式,判断与的关系,得出结论,也可以利用图象作判断.②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.例3.(1)(2022·湖北高三月考(文))(2023·上海·高一专题练习)下列函数中,定义域为的偶函数是( )A. B.C. D.(2).(2023·安徽省亳州市第一中学高一月考)设函数,则下列函数中为奇函数的是( )A. B. C. D.(3).(2023·北京市第四十四中学高一期中)若函数为偶函数,则a=A. B. C. D.【变式训练3-1】.(2023·上海·高一专题练习)判断下列函数的奇偶性.(1); (2)(3); (4);(5).【变式训练3-2】.(2023·江西宜春九中高一月考)函数是奇函数,且在内是增函数,,则不等式的解集为A. B.C. D.【变式训练3-3】.(2023·天津市南开区南大奥宇培训学校高二月考)已知偶函数 在区间上单调递增,则满足的取值范围是A.(﹣1,0) B.(0,1) C.(1,2) D.(﹣1,1)重难点3 利用函数的单调性或奇偶性求函数解析式或参数例4.(1)、(2023·上海·高一专题练习)若函数为偶函数,则_______________.(2).(2023·宁夏贺兰县景博中学高二期末(文))函数在单调递增,且为奇函数,若,则满足的的取值范围是.A. B. C. D.(3).(2023·桂林市临桂区五通中学高一期中)设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.重难点4 单调性与奇偶性的综合应用例5.(2022·上海·高三专题练习)已知定义域为的函数.(1)试判断函数在上的单调性,并用函数单调性的定义证明;(2)若对于任意,不等式恒成立,求实数的取值范围. 例6.(2022·北京北师大二附中高一期中)函数是定义在上的奇函数,当时,.(1)计算,;  (2)当时,求的解析式.例7.(2022·上海市实验学校高三月考)已知函数是定义域为上的奇函数,且(1)求的解析式. (2)用定义证明:在上是增函数.(3)若实数满足,求实数的范围. 重难点5 抽象函数的单调性与奇偶性例8.(2022·辽宁高三月考(理))已知定义域为,对任意都有,当时,,.(1)求和的值;(2)试判断在上的单调性,并证明;(3)解不等式:.【变式训练9-1】、(2022·河北正中实验中学)设是定义在上的函数,满足,当时,.()求的值,试证明是偶函数.()证明在上单调递减.()若,,求的取值范围. 四、定时训练(30分钟)1.(2017·上海师大附属第二外国语学校高一月考)下列四个函数中,在上为增函数的是( )A. B.C. D.2.(2023·上海市嘉定区第一中学高三月考)在下列函数中,定义域的偶函数是( )A. B.C. D.3.(2023·上海市行知中学高一月考)下列函数中,在上既是奇函数又是严格减函数的是( )A. B. C. D.4.(2022·上海·高三专题练习)下列函数中既是奇函数,又在区间上单调递减的是( )A. B. C. D.5.(2023·上海市奉贤区奉城高级中学高一月考)已知函数,满足对任意的,都有成立,实数的取值范围是( )A. B. C. D.6.(2023·上海市曹杨中学高一月考)下列函数中,为偶函数的是( )A. B. C. D.7.(2022·上海·高三专题练习)函数的单调递减区间为___________.8.(2022·上海·高三专题练习)已知函数最小值为,则____________.9.(2023·上海·高一专题练习)定义在上的偶函数在上严格减函数,且,则的取值范围是______10.(2023·上海·高一专题练习)函数是定义在()上的偶函数且在上是增函数,则,,的大小顺序是____________________________.11.(2023·上海·高一专题练习)定义在R上的奇函数在上的图像如图所示,则不等式的解集是____.12.(2023·上海·高一专题练习)若函数是定义在R上的奇函数,当时,,则函数在R上的解析式为=__________.13.(2023·上海·高一专题练习)写出下列函数的定义域,并指出它们的奇偶性:(1);(2);(3);(4);(5);(6)14.(2023·上海·高一专题练习)已知函数的定义域都是,而是奇函数,是偶函数.①判断的奇偶性;②如果,求函数的表达式. 增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的前提设函数的定义域为,如果存在实数满足条件(1)对于任意的,都有;(2)存在,使得(3)对于任意的,都有;(4)存在,使得结论为最大值为最小值奇偶性定义图象特点偶函数如果对于函数的定义域内任意一个,都有,那么函数是偶函数图象关于轴对称奇函数如果对于函数的定义域内任意一个,都有,那么函数是奇函数图象关于原点对称偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定不能确定奇函数偶函数奇函数偶函数不能确定不能确定奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数 专题5.2 函数的基本性质一、考情分析二、考点梳理1、函数的单调性(1)单调函数的定义 (2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2、函数的最值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值.3、函数单调性的常用结论(1)若均为区间A上的增(减)函数,则也是区间A上的增(减)函数;(2)若,则与的单调性相同;若,则与的单调性相反;(3)函数在公共定义域内与,的单调性相反;(4)函数在公共定义域内与的单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反;(6)一些重要函数的单调性:①的单调性:在和上单调递增,在和上单调递减;②(,)的单调性:在和上单调递增,在和上单调递减.4、函数的奇偶性(1).函数奇偶性的定义及图象特点判断与的关系时,也可以使用如下结论:如果或,则函数为偶函数;如果或,则函数为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2),在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括,则.(4)若函数是偶函数,则.(5)定义在上的任意函数都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数的定义域关于原点对称,则为偶函数,为奇函数,为偶函数.(7)掌握一些重要类型的奇偶函数:①函数为偶函数,函数为奇函数.②函数(且)为奇函数.③函数(且)为奇函数.④函数(且)为奇函数.5、函数的周期性1.周期函数对于函数,如果存在一个非零常数T,使得当x取定义域内的任何值时,都有,那么就称函数为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数的所有周期中存在一个最小的正数,那么这个最小的正数就叫做的最小正周期(若不特别说明,一般都是指最小正周期).注意:并不是所有周期函数都有最小正周期.3.函数周期性的常用结论设函数,.①若,则函数的周期为;②若,则函数的周期为;③若,则函数的周期为;④若,则函数的周期为;⑤函数关于直线与对称,那么函数的周期为 ;⑥若函数关于点对称,又关于点对称,则函数的周期是;⑦若函数关于直线对称,又关于点对称,则函数的周期是;⑧若函数是偶函数,其图象关于直线对称,则其周期为;⑨若函数是奇函数,其图象关于直线对称,则其周期为6.奇偶函数图象的对称性①若是偶函数,则的图象关于直线对称;②若是偶函数,则的图象关于点中心对称;三、题型突破重难点1 判断或证明函数的单调性1.(单调性不能混合乘除)复合函数的单调性①增函数+增函数=增函数,减函数+减函数=减函数;②增函数-减函数=增函数,减函数-增函数=减函数;③如果是增函数,那么是减函数,也是减函数。2.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对或进行适当变形,进而比较出与的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减.(4)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.3.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(1)、(2023·上海·高一专题练习)下列函数中,在是增函数的是( )A. B. C. D.【答案】A【分析】分别判断各选项函数所对应的单调增区间,可得答案.【详解】对于A,在是增函数,正确;对于B,在是减函数,错误;对于C,在是减函数,错误;对于D,在上没有意义,错误;故选:A(2).(2023·全国高三专题练习)已知函数在区间上是增函数,则的取值范围  A. B. C. D.【答案】B【分析】先求出函数的对称轴,再由二次函数的图象和条件列出关于的不等式.【详解】解:函数的对称轴为:,函数在区间上是增函数,,解得,故选:.【点睛】本题考查了二次函数的图象及单调性的应用,属于基础题.【变式训练1-1】、(2023·全国)函数在区间上单调递增,则的取值范围是( )A. B.C. D.【答案】D【分析】先求出抛物线的对称轴,而抛物线的开口向下,且在区间上单调递增,所以,从而可求出的取值范围【详解】解:函数的图像的对称轴为,因为函数在区间上单调递增,所以,解得,所以的取值范围为,故选:D【变式训练1-2】.(2023·宁夏贺兰县景博中学高二期末(文))若函数,是定义在上的减函数,则的取值范围为( )A. B.C. D.【答案】A【分析】本题根据减函数的定义再结合一次函数的性质直接求解即可.【详解】因为函数是定义在上的减函数,所以,解得.故选:A.【点睛】本题考查减函数的定义,一次函数的性质,是基础题.例2.(2023·全国高一课时练习)函数在R上为增函数,且,则实数m的取值范围是A. B.C. D.【答案】C【解析】因为函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),所以2m>-m+9,即m>3.故选C.【变式训练2-1】..(2023·江西省兴国县第三中学高一月考)函数 ,则满足<的取值范围是 A. B.[ ,)C.(,) D.[,)【答案】D【详解】函数 ,<, 故答案选D.点睛:这是抽象函数解不等式问题,没有表达式,要解不等式,只能是赋值法;这个题目,利用函数单调性直接比较括号内自变量的大小关系,列出不等式:注意定义域是,因此还要加上.重难点2 判断或证明函数的奇偶性1.(奇偶性不能混合加减)复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数奇函数=偶函数,奇函数偶函数=奇函数,偶函数偶函数=偶函数;2.判断函数奇偶性的常用方法及思路:(1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围相应地化简解析式,判断与的关系,得出结论,也可以利用图象作判断.②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.例3.(1)(2022·湖北高三月考(文))(2023·上海·高一专题练习)下列函数中,定义域为的偶函数是( )A. B.C. D.【答案】C【分析】根据函数的奇偶性的定义及判定方法,以及初等函数的性质,逐项判定,即可求解.【详解】对于A中,根据指数函数的性质知,函数为非奇非偶函数,不符合题意;对于B中,函数定义域为,但满足,所以函数为奇函数,不符合题意;对于C中,函数的定义域为,且满足,所以函数为偶函数,符合题意;对于D中,函数为偶函数,但定义域不是R,所以不符合题意.故选:C.(2).(2023·安徽省亳州市第一中学高一月考)设函数,则下列函数中为奇函数的是( )A. B. C. D.【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,,定义域不关于原点对称,不是奇函数;对于D,,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.(3).(2023·北京市第四十四中学高一期中)若函数为偶函数,则a=A. B. C. D.【答案】C【详解】因为函数y=(x+1)(x-a)为偶函数,则f(x)=f(-x),那么可知a=1,则a等于1,选C【变式训练3-1】.(2023·上海·高一专题练习)判断下列函数的奇偶性.(1); (2)(3); (4);(5).【答案】(1)既奇又偶函数;(2)偶函数;(3)非奇非偶函数;(4)奇函数;(5)奇函数.【分析】先求定义域,判断定义域是否关于原点对称,再根据奇偶函数的定义依次判断即可.【详解】(1)因为,所以,解得,即函数的定义域为,所以,为既奇又偶函数;(2)定义域为,,为偶函数;(3)因为,所以,即且,故函数的定义域为,定义域不关于原点对称,故为非奇非偶函数;(4)因为,所以解得或,故函数的定义域为,所以,所以,故为奇函数;(5)因为,定义域关于原点对称,时;时,,所以为奇函数;综上,(1)既奇又偶函数;(2)偶函数;(3)非奇非偶函数;(4)奇函数;(5)奇函数.【变式训练3-2】.(2023·江西宜春九中高一月考)函数是奇函数,且在内是增函数,,则不等式的解集为A. B.C. D.【答案】D【分析】易判断f(x)在(-∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.【详解】∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,由f(-3)=0,得f(﹣3)=﹣f(3)=0,即f(3)=0,作出f(x)的草图,如图所示:由图象,得 解得0<x<3或﹣3<x<0,∴xf(x)<0的解集为:(﹣3,0)∪(0,3),故选D.【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.【变式训练3-3】.(2023·天津市南开区南大奥宇培训学校高二月考)已知偶函数 在区间上单调递增,则满足的取值范围是A.(﹣1,0) B.(0,1) C.(1,2) D.(﹣1,1)【答案】B【分析】根据偶函数的性质和函数的单调性可直接判断,【详解】首先函数定义域是R,再者根据和偶函数 在区间上单调递增,可得,解得,故选B.【点睛】本题是基础题,考查偶函数的性质.重难点3 利用函数的单调性或奇偶性求函数解析式或参数例4.(1)、(2023·上海·高一专题练习)若函数为偶函数,则_______________.【答案】2【分析】把展开,只需一次项系数为0即可.【详解】因为函数为偶函数,所以m-2=0,解得m=2.也可用,解出m=2.故答案为:2【点睛】函数奇偶性的应用:(1)一般用或;(2)有时为了计算简便,我们可以对x取特殊值: 或 .(2).(2023·宁夏贺兰县景博中学高二期末(文))函数在单调递增,且为奇函数,若,则满足的的取值范围是.A. B. C. D.【答案】D【详解】 是奇函数,故 ;又 是增函数,,即 则有 ,解得 ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.(3).(2023·桂林市临桂区五通中学高一期中)设奇函数在上为增函数,且,则不等式的解集为A. B.C. D.【答案】D【详解】由f(x)为奇函数可知,=<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1).又∵f(x)在(0,+∞)上为增函数,∴奇函数f(x)在(-∞,0)上为增函数.所以0f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的前提设函数的定义域为,如果存在实数满足条件(1)对于任意的,都有;(2)存在,使得(3)对于任意的,都有;(4)存在,使得结论为最大值为最小值奇偶性定义图象特点偶函数如果对于函数的定义域内任意一个,都有,那么函数是偶函数图象关于轴对称奇函数如果对于函数的定义域内任意一个,都有,那么函数是奇函数图象关于原点对称偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定不能确定奇函数偶函数奇函数偶函数不能确定不能确定奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (沪教版2020必修第一册)高一数学上学期精品讲义 专题5.2 函数的基本性质(重难点突破)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map