广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年九年级数学第一学期期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.若一元二次方程ax2+bx+c=0的一个根为﹣1,则( )
A.a+b+c=0 B.a﹣b+c=0 C.﹣a﹣b+c=0 D.﹣a+b+c=0
2.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=110°,则∠BCD的度数为( )
A.55°B.70°C.110°D.125°
3.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为( )
A.1个B.2个C.3个D.4个
4.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同
D.游戏者配成紫色的概率为
5.下列图形,既是轴对称图形又是中心对称图形的是( )
A.正三角形B.正五边形C.等腰直角三角形D.矩形
6.如图,两条直线被三条平行线所截,若,则( )
A.B.C.D.
7.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于( )
A.B.C.D.
8.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为( )
A.5πB.12.5πC.20πD.25π
9.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( )
A.B.C.D.
10.如果某物体的三视图是如图所示的三个图形,
那么该物体的形状是
A.正方体 B.长方体 C.三棱柱 D.圆锥
11.下列图形中,不是中心对称图形的是( )
A.B.C.D.
12.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___个.
14.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.
15.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).
16.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年 的年利率不变,到期后取出2750元,则年利率为__________.
17.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.
18.计算sin60°cs60°的值为_____.
三、解答题(共78分)
19.(8分)随着技术的发展进步,某公司2018年采用的新型原料生产产品.这种新型原料的用量y(吨)与月份x之间的关系如图1所示,每吨新型原料所生产的产品的售价z(万元)与月份x之间的关系如图2所示.已知将每吨这种新型原料加工成的产品的成本为20万元.
(1)求出该公司这种新型原料的用量y(吨)与月份x之间的函数关系式;
(2)若该公司利用新型原料所生产的产品当月都全部销售,求哪个月利润最大,最大利润是多少?
20.(8分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)写出点B的坐标;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.
21.(8分)已知二次函数y=ax2+bx+4经过点(2,0)和(﹣2,12).
(1)求该二次函数解析式;
(2)写出它的图象的开口方向 、顶点坐标 、对称轴 ;
(3)画出函数的大致图象.
22.(10分)若二次函数y=ax2+bx﹣2的图象与x轴交于点A(4,0),与y轴交于点B,且过点C (3,﹣2).
(1)求二次函数表达式;
(2)若点P为抛物线上第一象限内的点,且S△PBA=5,求点P的坐标;
(3)在AB下方的抛物线上是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.
23.(10分)已知抛物线经过点和点.
求抛物线的解析式;
求抛物线与轴的交点的坐标(注:点在点的左边);
求的面积.
24.(10分)如图,已知抛物线经过点和点,与轴交于点.
(1)求此抛物线的解析式;
(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.
①用含的代数式表示线段的长;
②连接,,求的面积最大时点的坐标;
(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
25.(12分)计算:.
26.(12分)计算:2cs30°+(π﹣3.14)0﹣
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、D
5、D
6、D
7、B
8、D
9、B
10、C
11、A
12、A
二、填空题(每题4分,共24分)
13、1
14、
15、300+100
16、
17、1
18、
三、解答题(共78分)
19、(1);(2)四月份利润最大,最大为1920元
20、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.
21、(1);(2)向上,(1,﹣),直线x=1;(1)详见解析.
22、(1);(2);(3)存在,点M到y轴的距离为
23、(1);(2)点,点;(3)6.
24、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).
25、
26、.
2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区数学九年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了如图,点P,若点在抛物线上,则的值等内容,欢迎下载使用。
广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案: 这是一份广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案,共6页。试卷主要包含了下列命题是真命题的是,下列二次根式中的最简二次根式是等内容,欢迎下载使用。
2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案: 这是一份2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,,则图中全等三角形共有,如图,在中,,,则的度数为,若分式的值为零,则x=,周长38的三角形纸片等内容,欢迎下载使用。