广东省河源市和平县2023-2024学年数学九上期末教学质量检测模拟试题含答案
展开
这是一份广东省河源市和平县2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.下列一元二次方程中,没有实数根的是( )
A.B.
C.D.
2.如果1是方程的一个根,则方程的另一个根是( )
A.B.2C.D.1
3.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是( )
A.①②③B.①②④C.①③④D.②③④
4.如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是( )
A.B.C.D.
5.下列说法正确的是( )
A.“概率为1.1111的事件”是不可能事件
B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次
C.“任意画出一个等边三角形,它是轴对称图形”是随机事件
D.“任意画出一个平行四边行,它是中心对称图形”是必然事件
6.下列运算正确的是( )
A.B.C.D.
7.下列几何图形不是中心对称图形的是( )
A.平行四边形B.正五边形C.正方形D.正六边形
8.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
下面有四个推断:
①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;
②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;
③估计全校仅使用B支付的学生人数为200人;
④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.
其中合理推断的序号是( )
A.①②B.①③C.①④D.②③
9.如图,从一块半径为的圆形铁皮上剪出一个圆心角是的扇形,则此扇形围成的圆锥的侧面积为( )
A.B.C.D.
10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )
A.B.C.D.
11.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于( )
A.50°B.60°C.65°D.75°
12.如图,二次函数的图象,则下列结论正确的是( )
①;②;③;④
A.①②③B.②③④C.①③④D.①②③④
二、填空题(每题4分,共24分)
13.点A(﹣2,3)关于原点对称的点的坐标是_____.
14.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.
15.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为 .
16.对于实数,定义运算“◎”如下:◎.若◎,则_____.
17.如图,正方形ABCD中,P为AD上一点,BP⊥PE交BC的延长线于点E,若AB=6,AP=4,则CE的长为_____.
18.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.
三、解答题(共78分)
19.(8分)如图,已知在△ABC中,AD是∠BAC平分线,点E在AC边上,且∠AED=∠ADB.
求证:(1)△ABD∽△ADE; (2)AD2=AB·AE.
20.(8分)一个不透明的口袋中有1个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,1.
(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.
(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.
21.(8分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.
(1)试求这个抛物线的表达式;
(2)如果这个抛物线的顶点为M,求△AMC的面积;
(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.
22.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
23.(10分)某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
24.(10分)解答下列各题:
(1)计算:2cs31°﹣tan45°﹣;
(2)解方程:x2﹣11x+9=1.
25.(12分)如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.
(1)求点P的坐标及直线AC的解析式;
(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;
(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.
26.(12分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.
(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;
(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.
参考答案
一、选择题(每题4分,共48分)
1、A
2、A
3、A
4、C
5、D
6、D
7、B
8、B
9、A
10、C
11、C
12、B
二、填空题(每题4分,共24分)
13、(2,﹣3)
14、(1,3)
15、
16、-3或4
17、2
18、1
三、解答题(共78分)
19、 (1)、证明过程见解析;(2)、证明过程见解析
20、(1);(2)
21、(1)y=;(1);(3)点E的坐标为(3,1).
22、(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为米.
23、(1);(2)8640万元.
24、(1)1;(2)x1=1,x2=2.
25、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值为﹣3或,理由见解析
26、(1);(2)
相关试卷
这是一份2023-2024学年广东省河源市和平县七年级(上)期末数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份广东省河源市和平县2023-2024学年九年级上学期期末考试数学试题(含答案),共11页。试卷主要包含了本次考试范围等内容,欢迎下载使用。
这是一份2023-2024学年广东省河源市和平县九上数学期末调研试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,把二次函数化为的形式是,某班7名女生的体重等内容,欢迎下载使用。