终身会员
搜索
    上传资料 赚现金

    第六章 6.2.1 向量的加法运算 课时练(含答案)—2024春高中数学人教A版必修第二册

    立即下载
    加入资料篮
    第六章 6.2.1 向量的加法运算 课时练(含答案)—2024春高中数学人教A版必修第二册第1页
    第六章 6.2.1 向量的加法运算 课时练(含答案)—2024春高中数学人教A版必修第二册第2页
    第六章 6.2.1 向量的加法运算 课时练(含答案)—2024春高中数学人教A版必修第二册第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修 第二册6.2 平面向量的运算课后练习题

    展开

    这是一份数学必修 第二册6.2 平面向量的运算课后练习题,共9页。



    1.eq \(AB,\s\up6(→))+eq \(MB,\s\up6(→))+eq \(BO,\s\up6(→))+eq \(BC,\s\up6(→))+eq \(OM,\s\up6(→))等于( )
    A.eq \(BC,\s\up6(→)) B.eq \(AB,\s\up6(→)) C.eq \(AC,\s\up6(→)) D.eq \(AM,\s\up6(→))
    2.如图,在正六边形ABCDEF中,eq \(BA,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(EF,\s\up6(→))等于( )
    A.0 B.eq \(BE,\s\up6(→))
    C.eq \(AD,\s\up6(→)) D.eq \(CF,\s\up6(→))
    3.如图所示,在▱ABCD中,eq \(BC,\s\up6(→))+eq \(DC,\s\up6(→))+eq \(BA,\s\up6(→))等于( )
    A.eq \(BD,\s\up6(→)) B.eq \(DB,\s\up6(→))
    C.eq \(BC,\s\up6(→)) D.eq \(CB,\s\up6(→))
    4.若向量a表示“向东航行1 km”,向量b表示“向北航行eq \r(3) km”,则向量a+b表示( )
    A.向东北方向航行2 km
    B.向北偏东30°方向航行2 km
    C.向北偏东60°方向航行2 km
    D.向东北方向航行(1+eq \r(3))km
    5.若在△ABC中,eq \(AB,\s\up6(→))=a,eq \(BC,\s\up6(→))=b,且|a|=|b|=1,|a+b|=eq \r(2),则△ABC的形状是( )
    A.正三角形 B.锐角三角形
    C.钝角三角形 D.等腰直角三角形
    6.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则eq \(OP,\s\up6(→))+eq \(OQ,\s\up6(→))等于( )
    A.eq \(OH,\s\up6(→)) B.eq \(OG,\s\up6(→)) C.eq \(FO,\s\up6(→)) D.eq \(EO,\s\up6(→))
    7.如图,在平行四边形ABCD中,O是AC和BD的交点.则
    (1)eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(CD,\s\up6(→))=________;
    (2)eq \(AC,\s\up6(→))+eq \(BA,\s\up6(→))+eq \(DA,\s\up6(→))=________.
    8.在边长为1的等边三角形ABC中,|eq \(AB,\s\up6(→))+eq \(BC,\s\up6(→))|=________,|eq \(AB,\s\up6(→))+eq \(AC,\s\up6(→))|=________.
    9.如图所示,在△ABC中,O为重心,D,E,F分别是BC,AC,AB的中点,化简下列各式:
    (1)eq \(BC,\s\up6(→))+eq \(CE,\s\up6(→))+eq \(EA,\s\up6(→));
    (2)eq \(OE,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(EA,\s\up6(→));
    (3)eq \(AB,\s\up6(→))+eq \(FE,\s\up6(→))+eq \(DC,\s\up6(→)).
    10.如图,小船要从A处沿垂直河岸AC的方向到达对岸B处,此时水流的速度为6 km/h,测得小船正以6 km/h的速度沿垂直水流的方向向前行驶,求小船在静水中速度的大小.
    11.(多选)设a=(eq \(AB,\s\up6(→))+eq \(CD,\s\up6(→)))+(eq \(BC,\s\up6(→))+eq \(DA,\s\up6(→))),b是一个非零向量,则下列结论正确的有( )
    A.a∥b B.a+b=a
    C.a+b=b D.|a+b|<|a|+|b|
    12.(多选)下列说法错误的有( )
    A.如果非零向量a与b的方向相同或相反,那么a+b的方向必与a或b的方向相同
    B.若向量a∥b,且|a|>|b|>0,则向量a+b的方向与向量a的方向相同
    C.若eq \(AB,\s\up6(→))+eq \(BC,\s\up6(→))+eq \(CA,\s\up6(→))=0,则A,B,C一定为一个三角形的三个顶点
    D.若a,b均为非零向量,则|a+b|=|a|-|b|
    13.已知△ABC的三个顶点A,B,C及平面内一点P满足eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))=eq \(PC,\s\up6(→)),则下列结论中正确的是( )
    A.P在△ABC的内部
    B.P在△ABC的边AB上
    C.P在AB边所在的直线上
    D.P在△ABC的外部
    14.已知点G是△ABC的重心,则eq \(GA,\s\up6(→))+eq \(GB,\s\up6(→))+eq \(GC,\s\up6(→))=______.
    15.设|a|=2,e为单位向量,则|a+e|的最大值为______.
    16.如图,已知D,E,F分别为△ABC的三边BC,AC,AB的中点,求证:eq \(AD,\s\up6(→))+eq \(BE,\s\up6(→))+eq \(CF,\s\up6(→))=0.
    6.2.1 向量的加法运算
    1.C 2.D 3.C 4.B 5.D 6.C
    7.(1)eq \(AD,\s\up6(→)) (2)0 8.1 eq \r(3)
    9.解 (1)eq \(BC,\s\up6(→))+eq \(CE,\s\up6(→))+eq \(EA,\s\up6(→))=eq \(BE,\s\up6(→))+eq \(EA,\s\up6(→))=eq \(BA,\s\up6(→)).
    (2)eq \(OE,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(EA,\s\up6(→))=(eq \(OE,\s\up6(→))+eq \(EA,\s\up6(→)))+eq \(AB,\s\up6(→))=eq \(OA,\s\up6(→))+eq \(AB,\s\up6(→))=eq \(OB,\s\up6(→)).
    (3)eq \(AB,\s\up6(→))+eq \(FE,\s\up6(→))+eq \(DC,\s\up6(→))=eq \(AB,\s\up6(→))+eq \(BD,\s\up6(→))+eq \(DC,\s\up6(→))=eq \(AD,\s\up6(→))+eq \(DC,\s\up6(→))=eq \(AC,\s\up6(→)).
    10.解 设eq \(AB,\s\up6(→))表示小船垂直于河岸行驶的速度,eq \(AC,\s\up6(→))表示水流的速度,如图,
    连接BC,过点B作AC的平行线,过点A作BC的平行线,两条直线交于点D,
    则四边形ACBD为平行四边形,
    ∴eq \(AD,\s\up6(→))就是小船在静水中的速度.
    在Rt△BAC中,|eq \(AB,\s\up6(→))|=6 km/h,
    |eq \(AC,\s\up6(→))|=6 km/h,
    ∴|eq \(AD,\s\up6(→))|=|eq \(BC,\s\up6(→))|=eq \r(|\(AB,\s\up6(→))|2+|\(AC,\s\up6(→))|2)=6eq \r(2)(km/h).
    ∴小船在静水中速度的大小为6eq \r(2) km/h.
    11.AC
    12.ACD [A错,若a+b=0,则a+b的方向是任意的;B正确,若a和b方向相同,则它们的和的方向应该与a和b的方向相同,若它们的方向相反,而a的模大于b的模,则它们的和的方向与a的方向相同;C错,当A,B,C三点共线时,也满足eq \(AB,\s\up6(→))+eq \(BC,\s\up6(→))+eq \(CA,\s\up6(→))=0;D错,||a|-|b||≤|a+b|≤|a|+|b|.]
    13.D [
    eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))=eq \(PC,\s\up6(→)),根据向量加法的平行四边形法则,如图,则点P在△ABC外.]
    14.0
    解析 如图所示,延长AG交BC于点E,则点E为BC的中点,延长AE到点D,使GE=ED,
    则eq \(GB,\s\up6(→))+eq \(GC,\s\up6(→))=eq \(GD,\s\up6(→)),
    eq \(GD,\s\up6(→))+eq \(GA,\s\up6(→))=0,
    ∴eq \(GA,\s\up6(→))+eq \(GB,\s\up6(→))+eq \(GC,\s\up6(→))=0.
    15.3
    解析 在平面内任取一点O,作eq \(OA,\s\up6(→))=a,eq \(AB,\s\up6(→))=e,
    则a+e=eq \(OA,\s\up6(→))+eq \(AB,\s\up6(→))=eq \(OB,\s\up6(→)),
    因为e为单位向量,
    所以点B在以点A为圆心的单位圆上(如图所示),
    由图可知当点B在点B1处时,O,A,B1三点共线,
    |eq \(OB,\s\up6(→))|即|a+e|最大,最大值是3.
    16.证明 由题意知,eq \(AD,\s\up6(→))=eq \(AC,\s\up6(→))+eq \(CD,\s\up6(→)),
    eq \(BE,\s\up6(→))=eq \(BC,\s\up6(→))+eq \(CE,\s\up6(→)),eq \(CF,\s\up6(→))=eq \(CB,\s\up6(→))+eq \(BF,\s\up6(→)).
    由平面几何知识可知,
    eq \(EF,\s\up6(→))=eq \(CD,\s\up6(→)),eq \(BF,\s\up6(→))=eq \(FA,\s\up6(→)),
    所以eq \(AD,\s\up6(→))+eq \(BE,\s\up6(→))+eq \(CF,\s\up6(→))
    =(eq \(AC,\s\up6(→))+eq \(CD,\s\up6(→)))+(eq \(BC,\s\up6(→))+eq \(CE,\s\up6(→)))+(eq \(CB,\s\up6(→))+eq \(BF,\s\up6(→)))
    =(eq \(AC,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(CE,\s\up6(→))+eq \(BF,\s\up6(→)))+(eq \(BC,\s\up6(→))+eq \(CB,\s\up6(→)))
    =(eq \(AC,\s\up6(→))+eq \(CE,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(BF,\s\up6(→)))+0
    =eq \(AE,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(BF,\s\up6(→))
    =eq \(AE,\s\up6(→))+eq \(EF,\s\up6(→))+eq \(FA,\s\up6(→))=0.

    相关试卷

    人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示当堂达标检测题:

    这是一份人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示当堂达标检测题,共10页。试卷主要包含了向量a=,a∥b,则b可能是,与a=平行的单位向量为等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册6.2 平面向量的运算课后作业题:

    这是一份人教A版 (2019)必修 第二册6.2 平面向量的运算课后作业题,共10页。试卷主要包含了下列说法中正确的是,下列各式计算正确的有,计算,设两个非零向量a与b不共线等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map