2024年高考数学重难点突破讲义:2021全国甲卷(理)
展开一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设集合,则( )
A. B.
C. D.
【答案】B
【解析】因为,所以.
2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%
B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C. 估计该地农户家庭年收入的平均值不超过6.5万元
D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【答案】C
【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入平均值的估计值为(万元),超过6.5万元,故C错误.
综上,给出结论中不正确的是C.
3. 已知,则( )
A. B. C. D.
【答案】B
【解析】,.
4. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()
A. 1.5B. 1.2C. 0.8D. 0.6
【答案】C
【解析】由,当时,,
则.
5. 已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )
A. B. C. D.
【答案】A
【解析】因为,由双曲线的定义可得,
所以,;
因为,由余弦定理可得,
整理可得,所以,即.
6. 在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )
A. B. C. D.
【答案】D
【解析】由题意及正视图可得几何体的直观图,如图所示,
所以其侧视图为
7. 等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则( )
A. 甲是乙的充分条件但不是必要条件
B. 甲是乙的必要条件但不是充分条件
C. 甲是乙的充要条件
D. 甲既不是乙的充分条件也不是乙的必要条件
【答案】B
【解析】由题,当数列时,满足,
但是不是递增数列,所以甲不是乙的充分条件.
若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.
8. 2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()( )
A. 346B. 373C. 446D. 473
【答案】B
【解析】
过作,过作,
故,
由题,易知为等腰直角三角形,所以.
所以.
因为,所以
在中,由正弦定理得:
,
而,
所以
所以.
9. 若,则( )
A. B. C. D.
【答案】A
【解析】
,
,,,解得,
,.
10. 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
【答案】C
【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
所以2个0不相邻的概率为.
11. 已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )
A. B. C. D.
【答案】A
【解析】,为等腰直角三角形,,
则外接圆的半径为,又球的半径为1,
设到平面的距离为,
则,
所以.
12. 设函数的定义域为R,为奇函数,为偶函数,当时,.若,则( )
A. B. C. D.
【答案】D
【解析】因为是奇函数,所以①;
因为是偶函数,所以②.
令,由①得:,由②得:,
因为,所以,
令,由①得:,所以.
思路一:从定义入手.
所以.
思路二:从周期性入手
由两个对称性可知,函数的周期.
所以.
二、填空题:本题共4小题,每小题5分,共20分.
13. 曲线在点处的切线方程为__________.
【答案】
【解析】由题,当时,,故点在曲线上.
求导得:,所以.
故切线方程为.
14. 已知向量.若,则________.
【答案】.
【解析】,
,解得.
15. 已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
【答案】
【解析】因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
16. 已知函数的部分图像如图所示,则满足条件的最小正整数x为________.
【答案】2
【解析】由图可知,即,所以;
由五点法可得,即;所以.
因为,;
所以由可得或;
因为,所以,
方法一:结合图形可知,最小正整数应该满足,即,
解得,令,可得,
可得的最小正整数为2.
方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.
三、解答题:共70分.解答应写出交字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:
【解析】(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
18. 已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【解析】选①②作条件证明③:
[方法一]:待定系数法+与关系式
设,则,
当时,;
当时,;
因为也是等差数列,所以,解得;
所以,,故.
[方法二] :待定系数法
设等差数列的公差为d,等差数列的公差为,
则,将代入,
化简得对于恒成立.
则有,解得.所以.
选①③作条件证明②:
因为,是等差数列,
所以公差,
所以,即,
因为,
所以是等差数列.
选②③作条件证明①:
[方法一]:定义法
设,则,
当时,;
当时,;
因为,所以,解得或;
当时,,当时,满足等差数列的定义,此时为等差数列;
当时,,不合题意,舍去.
综上可知为等差数列.
[方法二]【最优解】:求解通项公式
因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.
19. 已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
【解析】(1)[方法一]:几何法
因为,所以.
又因为,,所以平面.又因为,构造正方体,如图所示,
过E作的平行线分别与交于其中点,连接,
因为E,F分别为和的中点,所以是BC的中点,
易证,则.
又因为,所以.
又因为,所以平面.
又因为平面,所以.
[方法二] 【最优解】:向量法
因为三棱柱是直三棱柱,底面,
,,,又,平面.所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
,.
由题设().
因为,
所以,所以.
[方法三]:因为,,所以,故,,所以,所以.
(2)[方法一]【最优解】:向量法
设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,此时.
[方法二] :几何法
如图所示,延长交的延长线于点S,联结交于点T,则平面平面.
作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
设,过作交于点G.
由得.
又,即,所以.
又,即,所以.
所以.
则,
所以,当时,.
[方法三]:投影法
如图,联结,
在平面的投影为,记面与面所成的二面角的平面角为,则.
设,在中,.
在中,,过D作的平行线交于点Q.
在中,.
在中,由余弦定理得,,,
,,
当,即,面与面所成二面角的正弦值最小,最小值为.
20. 抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.
(1)求C,的方程;
(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.
【解析】(1)依题意设抛物线,
,
所以抛物线的方程为,
与相切,所以半径为,
所以的方程为;
(2)[方法一]:设
若斜率不存在,则方程为或,
若方程为,根据对称性不妨设,
则过与圆相切的另一条直线方程为,
此时该直线与抛物线只有一个交点,即不存在,不合题意;
若方程为,根据对称性不妨设
则过与圆相切的直线为,
又,
,此时直线关于轴对称,
所以直线与圆相切;
若直线斜率均存在,
则,
所以直线方程为,
整理得,
同理直线的方程为,
直线的方程为,
与圆相切,
整理得,
与圆相切,同理
所以为方程的两根,
,
到直线的距离为:
,
所以直线与圆相切;
综上若直线与圆相切,则直线与圆相切.
[方法二]【最优解】:设.
当时,同解法1.
当时,直线的方程为,即.
由直线与相切得,化简得,
同理,由直线与相切得.
因为方程同时经过点,所以的直线方程为,点M到直线距离为.
所以直线与相切.
综上所述,若直线与相切,则直线与相切.
21. 已知且,函数.
(1)当时,求的单调区间;
(2)若曲线与直线有且仅有两个交点,求a的取值范围.
【解析】(1)当时,,
令得,当时,,当时,,
∴函数在上单调递增;上单调递减;
(2)[方法一]【最优解】:分离参数
设函数,
则,令,得,
在内,单调递增;
在上,单调递减;
,
又,当趋近于时,趋近于0,
所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,
所以的取值范围是.
[方法二]:构造差函数
由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解.
构造函数,求导数得.
当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;
当时,,令得,当时,;当时,;所以,函数的递增区间为,递减区间为.
由于,
当时,有,即,由函数在内有两个零点知,所以,即.
构造函数,则,所以递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且.
所以,实数a的取值范围为.
[方法三]分离法:一曲一直
曲线与有且仅有两个交点等价为在区间内有两个不相同的解.
因为,所以两边取对数得,即,问题等价为与有且仅有两个交点.
①当时,与只有一个交点,不符合题意.
②当时,取上一点在点的切线方程为,即.
当与为同一直线时有得
直线的斜率满足:时,与有且仅有两个交点.
记,令,有.在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有.
综上所述,实数a的取值范围为.
[方法四]:直接法
.
因为,由得.
当时,在区间内单调递减,不满足题意;
当时,,由得在区间内单调递增,由得在区间内单调递减.
因为,且,所以,即,即,两边取对数,得,即.
令,则,令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所以,即.
故实数a的范围为.]
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程](10分)
22. 在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)将C的极坐标方程化为直角坐标方程;
(2)设点A的直角坐标为,M为C上的动点,点P满足,写出Р的轨迹的参数方程,并判断C与是否有公共点.
【解析】(1)由曲线C的极坐标方程可得,
将代入可得,即,
即曲线C的直角坐标方程为;
(2)
[方法一]【最优解】
设,设
,
,
则,即,
故P的轨迹的参数方程为(为参数)
曲线C的圆心为,半径为,曲线的圆心为,半径为2,
则圆心距为,,两圆内含,
故曲线C与没有公共点.
[方法二]:
设点的直角坐标为,,,因为,
所以,,,
由,
即,
解得,
所以,,代入的方程得,
化简得点的轨迹方程是,表示圆心为,,半径为2的圆;
化为参数方程是,为参数;
计算,
所以圆与圆内含,没有公共点.
[选修4-5:不等式选讲](10分)
23. 已知函数.
(1)画出和的图像;
(2)若,求a的取值范围.
【解析】(1)可得,画出图像如下:
,画出函数图像如下:
(2),
如图,在同一个坐标系里画出图像,
是平移了个单位得到,
则要使,需将向左平移,即,
当过时,,解得或(舍去),
则数形结合可得需至少将向左平移个单位,.
一级品
二级品
合计
甲机床
150
50
200
乙机床
120
80
200
合计
270
130
400
0.050
0.010
0.001
k
3.841
6.635
10.828
2024年高考数学重难点突破讲义:2023全国甲卷(文): 这是一份2024年高考数学重难点突破讲义:2023全国甲卷(文),共17页。试卷主要包含了记为等差数列的前项和.若,,则, 曲线在点处的切线方程为等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2023全国甲卷(理): 这是一份2024年高考数学重难点突破讲义:2023全国甲卷(理),共18页。试卷主要包含了向量,且,则,“”是“”的等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2022全国乙卷(理): 这是一份2024年高考数学重难点突破讲义:2022全国乙卷(理),共22页。