|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年高考数学重难点突破讲义:2021全国乙卷(文)
    立即下载
    加入资料篮
    2024年高考数学重难点突破讲义:2021全国乙卷(文)01
    2024年高考数学重难点突破讲义:2021全国乙卷(文)02
    2024年高考数学重难点突破讲义:2021全国乙卷(文)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学重难点突破讲义:2021全国乙卷(文)

    展开
    这是一份2024年高考数学重难点突破讲义:2021全国乙卷(文),共21页。

    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 已知全集,集合,则( )
    A. B. C. D.
    【答案】A
    【解析】由题意可得:,则.
    2. 设,则( )
    A. B. C. D.
    【答案】C
    【解析】由题意可得:.
    3. 已知命题﹔命题﹐,则下列命题中为真命题的是( )
    A. B. C. D.
    【答案】A
    【解析】由于,所以命题为真命题;
    由于在上为增函数,,所以,所以命题为真命题;
    所以为真命题,、、为假命题.
    4. 函数的最小正周期和最大值分别是( )
    A. 和B. 和2C. 和D. 和2
    【答案】C
    【解析】由题,,所以的最小正周期为,最大值为.
    5. 若满足约束条件则的最小值为( )
    A. 18B. 10C. 6D. 4
    【答案】C
    【解析】由题意,作出可行域,如图阴影部分所示,
    由可得点,
    转换目标函数为,
    上下平移直线,数形结合可得当直线过点时,取最小值,
    此时.
    6. ( )
    A. B. C. D.
    【答案】D
    【解析】由题意,
    .
    7. 在区间随机取1个数,则取到的数小于的概率为( )
    A. B. C. D.
    【答案】B
    【解析】设“区间随机取1个数”,对应集合为: ,区间长度为,
    “取到的数小于”, 对应集合为:,区间长度为,
    所以.
    8. 下列函数中最小值为4的是( )
    A. B.
    C. D.
    【答案】C
    【解析】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
    对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
    对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
    对于D,,函数定义域为,而且,如当,,D不符合题意.
    9. 设函数,则下列函数中为奇函数的是( )
    A. B. C. D.
    【答案】B
    【解析】由题意可得,
    对于A,不是奇函数;
    对于B,是奇函数;
    对于C,,定义域不关于原点对称,不是奇函数;
    对于D,,定义域不关于原点对称,不是奇函数.
    10. 在正方体中,P为的中点,则直线与所成的角为( )
    A. B. C. D.
    【答案】D
    【解析】
    如图,连接,因为∥,
    所以或其补角为直线与所成的角,
    因为平面,所以,又,,
    所以平面,所以,
    设正方体棱长为2,则,
    ,所以.
    11. 设B是椭圆的上顶点,点P在C上,则的最大值为( )
    A. B. C. D. 2
    【答案】A
    【解析】设点,因为,,所以

    而,所以当时,的最大值为.
    12. 设,若为函数的极大值点,则( )
    A. B. C. D.
    【答案】D
    【解析】若,则为单调函数,无极值点,不符合题意,故.
    有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,a为函数的极大值点,在左右附近都是小于零的.
    当时,由,,画出的图象如下图所示:

    由图可知,,故.
    当时,由时,,画出的图象如下图所示:

    由图可知,,故.
    综上所述,成立.
    二、填空题:本题共4小题,每小题5分,共20分.
    13. 已知向量,若,则_________.
    【答案】
    【解析】由题意结合向量平行的充分必要条件可得:,
    解方程可得:.
    14. 双曲线的右焦点到直线的距离为________.
    【答案】
    【解析】由已知,,所以双曲线的右焦点为,
    所以右焦点到直线的距离为.
    15. 记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.
    【答案】
    【解析】由题意,,
    所以,
    所以,解得(负值舍去).
    16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
    【答案】③④(或②⑤,答案不唯一)
    【解析】选择侧视图为③,俯视图为④,

    如图所示,长方体中,,
    分别为棱的中点,
    则正视图①,侧视图③,俯视图④对应的几何体为三棱锥;
    则正视图①,侧视图②,俯视图⑤对应的几何体为三棱锥;
    三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
    (一)必考题:共60分.
    17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
    旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
    (1)求,,,;
    (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
    【解析】(1),


    .
    (2)依题意,,,
    ,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
    18. 如图,四棱锥的底面是矩形,底面,M为的中点,且.
    (1)证明:平面平面;
    (2)若,求四棱锥的体积.
    【解析】(1)因为底面,平面,
    所以,
    又,,
    所以平面,
    而平面,
    所以平面平面.
    (2)[方法一]:相似三角形法
    由(1)可知.
    于是,故.
    因为,所以,即.
    故四棱锥的体积.
    [方法二]:平面直角坐标系垂直垂直法
    由(2)知,所以.
    建立如图所示的平面直角坐标系,设.
    因为,所以,,,.
    从而.
    所以,即.下同方法一.
    [方法三]【最优解】:空间直角坐标系法
    建立如图所示的空间直角坐标系,
    设,所以,,,,.
    所以,,.
    所以.
    所以,即.下同方法一.
    [方法四]:空间向量法
    由,得.
    所以.
    即.
    又底面,在平面内,
    因此,所以.
    所以,
    由于四边形是矩形,根据数量积的几何意义,
    得,即.
    所以,即.下同方法一.
    19. 设是首项为1的等比数列,数列满足.已知,,成等差数列.
    (1)求和的通项公式;
    (2)记和分别为和的前n项和.证明:.
    【解析】(1)因为是首项为1的等比数列且,,成等差数列,
    所以,所以,
    即,解得,所以,
    所以.
    (2)[方法一]:作差后利用错位相减法求和



    设, ⑧
    则. ⑨
    由⑧-⑨得.
    所以.
    因此.
    故.
    [方法二]最优解】:公式法和错位相减求和法
    证明:由(1)可得,
    ,①
    ,②
    ①②得 ,
    所以,
    所以,
    所以.
    [方法三]:构造裂项法
    由(Ⅰ)知,令,且,即,
    通过等式左右两边系数比对易得,所以.
    则,下同方法二.
    [方法四]:导函数法
    设,
    由于,
    则.
    又,
    所以
    ,下同方法二.
    20. 已知抛物线的焦点F到准线的距离为2.
    (1)求C的方程;
    (2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
    【解析】(1)抛物线的焦点,准线方程为,
    由题意,该抛物线焦点到准线的距离为,
    所以该抛物线的方程为;
    (2)[方法一]:轨迹方程+基本不等式法
    设,则,
    所以,
    由在抛物线上可得,即,
    据此整理可得点的轨迹方程为,
    所以直线的斜率,
    当时,;
    当时,,
    当时,因为,
    此时,当且仅当,即时,等号成立;
    当时,;
    综上,直线的斜率的最大值为.
    [方法二]:【最优解】轨迹方程+数形结合法
    同方法一得到点Q的轨迹方程为.
    设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为.
    [方法三]:轨迹方程+换元求最值法
    同方法一得点Q的轨迹方程为.
    设直线的斜率为k,则.
    令,则的对称轴为,所以.故直线斜率的最大值为.
    [方法四]:参数+基本不等式法
    由题可设.
    因为,所以.
    于是,所以
    则直线的斜率为.
    当且仅当,即时等号成立,所以直线斜率的最大值为.
    21. 已知函数.
    (1)讨论的单调性;
    (2)求曲线过坐标原点的切线与曲线的公共点的坐标.
    【解析】(1)由函数的解析式可得:,
    导函数的判别式,
    当时,在R上单调递增,
    当时,解为:,
    当时,单调递增;
    当时,单调递减;
    当时,单调递增;
    综上可得:当时,在R上单调递增,
    当时,在,上
    单调递增,在上单调递减.
    (2)由题意可得:,,
    则切线方程为:,
    切线过坐标原点,则:,
    整理可得:,即:,
    解得:,则,
    切线方程为:,
    与联立得,
    化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,∴该方程可以分解因式为
    解得,

    综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.
    (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做.则按所做的第一题计分.
    [选修4-4:坐标系与参数方程]
    22. 在直角坐标系中,的圆心为,半径为1.
    (1)写出的一个参数方程;
    (2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
    【解析】(1)由题意,的普通方程为,
    所以的参数方程为,(为参数)
    (2)[方法一]:直角坐标系方法
    ①当直线的斜率不存在时,直线方程为,此时圆心到直线的距离为,故舍去.
    ②当切线斜率存在时,设其方程为,即.
    故,即,解得.
    所以切线方程为或.
    两条切线的极坐标方程分别为和.
    即和.
    [方法二]【最优解】:定义求斜率法
    如图所示,过点F作的两条切线,切点分别为A,B.

    在中,,又轴,所以两条切线的斜率分别和.
    故切线的方程为,,这两条切线的极坐标方程为和.
    即和.
    [选修4—5:不等式选讲]
    23. 已知函数.
    (1)当时,求不等式的解集;
    (2)若,求a的取值范围.
    【解析】(1)[方法一]:绝对值的几何意义法
    当时,,表示数轴上的点到和的距离之和,
    则表示数轴上的点到和的距离之和不小于,
    当或时所对应的数轴上的点到所对应的点距离之和等于6,
    ∴数轴上到所对应的点距离之和等于大于等于6得到所对应的坐标的范围是或,
    所以解集为.
    [方法二]【最优解】:零点分段求解法
    当时,.
    当时,,解得;
    当时,,无解;
    当时,,解得.
    综上,的解集为.
    (2)[方法一]:绝对值不等式的性质法求最小值
    依题意,即恒成立,

    当且仅当时取等号,
    ,
    故,
    所以或,
    解得.
    所以的取值范围是.
    [方法二]【最优解】:绝对值的几何意义法求最小值
    由是数轴上数x表示的点到数a表示的点的距离,得,故,下同解法一.
    [方法三]:分类讨论+分段函数法
    当时,
    则,此时,无解.
    当时,
    则,此时,由得,.
    综上,a的取值范围为.
    [方法四]:函数图象法解不等式
    由方法一求得后,构造两个函数和,
    即和,
    如图,两个函数的图像有且仅有一个交点,
    由图易知,则.
    旧设备
    9.8
    10.3
    10.0
    10.2
    9.9
    9.8
    10.0
    10.1
    10.2
    9.7
    新设备
    10.1
    10.4
    10.1
    10.0
    10.1
    103
    10.6
    10.5
    10.4
    10.5
    相关试卷

    2024年高考数学重难点突破讲义:2023全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(文),共18页。试卷主要包含了已知是偶函数,则,正方形的边长是2,是的中点,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2023全国乙卷(理): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(理),共19页。试卷主要包含了已知是偶函数,则等内容,欢迎下载使用。

    2024年高考数学重难点突破讲义:2022全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2022全国乙卷(文),共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高考数学重难点突破讲义:2021全国乙卷(文)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map