2024年高考数学重难点突破讲义:2021全国乙卷(文)
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知全集,集合,则( )
A. B. C. D.
【答案】A
【解析】由题意可得:,则.
2. 设,则( )
A. B. C. D.
【答案】C
【解析】由题意可得:.
3. 已知命题﹔命题﹐,则下列命题中为真命题的是( )
A. B. C. D.
【答案】A
【解析】由于,所以命题为真命题;
由于在上为增函数,,所以,所以命题为真命题;
所以为真命题,、、为假命题.
4. 函数的最小正周期和最大值分别是( )
A. 和B. 和2C. 和D. 和2
【答案】C
【解析】由题,,所以的最小正周期为,最大值为.
5. 若满足约束条件则的最小值为( )
A. 18B. 10C. 6D. 4
【答案】C
【解析】由题意,作出可行域,如图阴影部分所示,
由可得点,
转换目标函数为,
上下平移直线,数形结合可得当直线过点时,取最小值,
此时.
6. ( )
A. B. C. D.
【答案】D
【解析】由题意,
.
7. 在区间随机取1个数,则取到的数小于的概率为( )
A. B. C. D.
【答案】B
【解析】设“区间随机取1个数”,对应集合为: ,区间长度为,
“取到的数小于”, 对应集合为:,区间长度为,
所以.
8. 下列函数中最小值为4的是( )
A. B.
C. D.
【答案】C
【解析】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.
9. 设函数,则下列函数中为奇函数的是( )
A. B. C. D.
【答案】B
【解析】由题意可得,
对于A,不是奇函数;
对于B,是奇函数;
对于C,,定义域不关于原点对称,不是奇函数;
对于D,,定义域不关于原点对称,不是奇函数.
10. 在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
【答案】D
【解析】
如图,连接,因为∥,
所以或其补角为直线与所成的角,
因为平面,所以,又,,
所以平面,所以,
设正方体棱长为2,则,
,所以.
11. 设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D. 2
【答案】A
【解析】设点,因为,,所以
,
而,所以当时,的最大值为.
12. 设,若为函数的极大值点,则( )
A. B. C. D.
【答案】D
【解析】若,则为单调函数,无极值点,不符合题意,故.
有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,a为函数的极大值点,在左右附近都是小于零的.
当时,由,,画出的图象如下图所示:
由图可知,,故.
当时,由时,,画出的图象如下图所示:
由图可知,,故.
综上所述,成立.
二、填空题:本题共4小题,每小题5分,共20分.
13. 已知向量,若,则_________.
【答案】
【解析】由题意结合向量平行的充分必要条件可得:,
解方程可得:.
14. 双曲线的右焦点到直线的距离为________.
【答案】
【解析】由已知,,所以双曲线的右焦点为,
所以右焦点到直线的距离为.
15. 记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.
【答案】
【解析】由题意,,
所以,
所以,解得(负值舍去).
16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
【答案】③④(或②⑤,答案不唯一)
【解析】选择侧视图为③,俯视图为④,
如图所示,长方体中,,
分别为棱的中点,
则正视图①,侧视图③,俯视图④对应的几何体为三棱锥;
则正视图①,侧视图②,俯视图⑤对应的几何体为三棱锥;
三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【解析】(1),
,
,
.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
18. 如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
【解析】(1)因为底面,平面,
所以,
又,,
所以平面,
而平面,
所以平面平面.
(2)[方法一]:相似三角形法
由(1)可知.
于是,故.
因为,所以,即.
故四棱锥的体积.
[方法二]:平面直角坐标系垂直垂直法
由(2)知,所以.
建立如图所示的平面直角坐标系,设.
因为,所以,,,.
从而.
所以,即.下同方法一.
[方法三]【最优解】:空间直角坐标系法
建立如图所示的空间直角坐标系,
设,所以,,,,.
所以,,.
所以.
所以,即.下同方法一.
[方法四]:空间向量法
由,得.
所以.
即.
又底面,在平面内,
因此,所以.
所以,
由于四边形是矩形,根据数量积的几何意义,
得,即.
所以,即.下同方法一.
19. 设是首项为1的等比数列,数列满足.已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
【解析】(1)因为是首项为1的等比数列且,,成等差数列,
所以,所以,
即,解得,所以,
所以.
(2)[方法一]:作差后利用错位相减法求和
,
,
.
设, ⑧
则. ⑨
由⑧-⑨得.
所以.
因此.
故.
[方法二]最优解】:公式法和错位相减求和法
证明:由(1)可得,
,①
,②
①②得 ,
所以,
所以,
所以.
[方法三]:构造裂项法
由(Ⅰ)知,令,且,即,
通过等式左右两边系数比对易得,所以.
则,下同方法二.
[方法四]:导函数法
设,
由于,
则.
又,
所以
,下同方法二.
20. 已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
【解析】(1)抛物线的焦点,准线方程为,
由题意,该抛物线焦点到准线的距离为,
所以该抛物线的方程为;
(2)[方法一]:轨迹方程+基本不等式法
设,则,
所以,
由在抛物线上可得,即,
据此整理可得点的轨迹方程为,
所以直线的斜率,
当时,;
当时,,
当时,因为,
此时,当且仅当,即时,等号成立;
当时,;
综上,直线的斜率的最大值为.
[方法二]:【最优解】轨迹方程+数形结合法
同方法一得到点Q的轨迹方程为.
设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为.
[方法三]:轨迹方程+换元求最值法
同方法一得点Q的轨迹方程为.
设直线的斜率为k,则.
令,则的对称轴为,所以.故直线斜率的最大值为.
[方法四]:参数+基本不等式法
由题可设.
因为,所以.
于是,所以
则直线的斜率为.
当且仅当,即时等号成立,所以直线斜率的最大值为.
21. 已知函数.
(1)讨论的单调性;
(2)求曲线过坐标原点的切线与曲线的公共点的坐标.
【解析】(1)由函数的解析式可得:,
导函数的判别式,
当时,在R上单调递增,
当时,解为:,
当时,单调递增;
当时,单调递减;
当时,单调递增;
综上可得:当时,在R上单调递增,
当时,在,上
单调递增,在上单调递减.
(2)由题意可得:,,
则切线方程为:,
切线过坐标原点,则:,
整理可得:,即:,
解得:,则,
切线方程为:,
与联立得,
化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,∴该方程可以分解因式为
解得,
,
综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做.则按所做的第一题计分.
[选修4-4:坐标系与参数方程]
22. 在直角坐标系中,的圆心为,半径为1.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
【解析】(1)由题意,的普通方程为,
所以的参数方程为,(为参数)
(2)[方法一]:直角坐标系方法
①当直线的斜率不存在时,直线方程为,此时圆心到直线的距离为,故舍去.
②当切线斜率存在时,设其方程为,即.
故,即,解得.
所以切线方程为或.
两条切线的极坐标方程分别为和.
即和.
[方法二]【最优解】:定义求斜率法
如图所示,过点F作的两条切线,切点分别为A,B.
在中,,又轴,所以两条切线的斜率分别和.
故切线的方程为,,这两条切线的极坐标方程为和.
即和.
[选修4—5:不等式选讲]
23. 已知函数.
(1)当时,求不等式的解集;
(2)若,求a的取值范围.
【解析】(1)[方法一]:绝对值的几何意义法
当时,,表示数轴上的点到和的距离之和,
则表示数轴上的点到和的距离之和不小于,
当或时所对应的数轴上的点到所对应的点距离之和等于6,
∴数轴上到所对应的点距离之和等于大于等于6得到所对应的坐标的范围是或,
所以解集为.
[方法二]【最优解】:零点分段求解法
当时,.
当时,,解得;
当时,,无解;
当时,,解得.
综上,的解集为.
(2)[方法一]:绝对值不等式的性质法求最小值
依题意,即恒成立,
,
当且仅当时取等号,
,
故,
所以或,
解得.
所以的取值范围是.
[方法二]【最优解】:绝对值的几何意义法求最小值
由是数轴上数x表示的点到数a表示的点的距离,得,故,下同解法一.
[方法三]:分类讨论+分段函数法
当时,
则,此时,无解.
当时,
则,此时,由得,.
综上,a的取值范围为.
[方法四]:函数图象法解不等式
由方法一求得后,构造两个函数和,
即和,
如图,两个函数的图像有且仅有一个交点,
由图易知,则.
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
103
10.6
10.5
10.4
10.5
2024年高考数学重难点突破讲义:2023全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(文),共18页。试卷主要包含了已知是偶函数,则,正方形的边长是2,是的中点,则等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2023全国乙卷(理): 这是一份2024年高考数学重难点突破讲义:2023全国乙卷(理),共19页。试卷主要包含了已知是偶函数,则等内容,欢迎下载使用。
2024年高考数学重难点突破讲义:2022全国乙卷(文): 这是一份2024年高考数学重难点突破讲义:2022全国乙卷(文),共19页。