所属成套资源:备战2024年中考数学二轮专题复习真题演练
备战2024年中考数学二轮专题复习真题演练之图形认识初步
展开
这是一份备战2024年中考数学二轮专题复习真题演练之图形认识初步,文件包含备战2024年中考数学二轮专题复习真题演练之图形认识初步解析docx、备战2024年中考数学二轮专题复习真题演练之图形认识初步docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
一、选择题
1.(2023·宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( ).
A.B.
C.D.
2.(2023·扬州)下列图形中是棱锥的侧面展开图的是( )
A.B.
C.D.
3.(2023·威海)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是( )
A.A点B.B点C.C点D.D点
4.(2023·河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为( )
A.30°B.50°C.60°D.80°
5.(2023·绥化)将一副三角板按下图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为( )
A.55°B.65°C.70°D.75°
6.(2023·宜昌)“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ).
A.文B.明C.典D.范
7.(2023·枣庄)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为( )
A.14°B.16°C.24°D.26°
8.(2023·武威)如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角∠ABC=50°时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角∠EBC=( )
A.60°B.70°C.80°D.85°
9.(2023·达州)下列图形中,是长方体表面展开图的是( )
A.B.
C.D.
二、填空题
10.(2023·大连)如图,在数轴上,OB=1,过O作直线l⊥OB于点O,在直线l上截取OA=2,且A在OC上方.连接AB,以点B为圆心,AB为半径作弧交直线OB于点C,则C点的横坐标为 .
11.(2023·无锡)若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为 .
12.(2023·十堰)一副三角板按如图所示放置,点A在DE上,点F在BC上,若∠EAB=35°,则∠DFC= °.
13.(2023·广安)如图,圆柱形玻璃杯的杯高为9cm,底面周长为16cm,在杯内壁离杯底4cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所走的最短路程为 cm.(杯壁厚度不计)
三、作图题
14.(2023·滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法.)
(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明.)
15.(2023·武威)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:
如图,已知⊙O,A是⊙O上一点,只用圆规将⊙O的圆周四等分.(按如下步骤完成,保留作图痕迹)
①以点A为圆心,OA长为半径,自点A起,在⊙O上逆时针方向顺次截取AB=BC=CD;
②分别以点A,点D为圆心,AC长为半径作弧,两弧交于⊙O上方点E;
③以点A为圆心,OE长为半径作弧交⊙O于G,H两点.即点A,G,D,H将⊙O的圆周四等分.
四、综合题
16.(2023·广东)综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;
(2)证明(1)中你发现的结论.
17.(2023·丽水)某数学兴趣小组活动,准备将一张三角形纸片(如图)进行如下操作.并进行猜想和证明。
(1)用三角板分别取AB,AC的中点D,E,连结DE,画AF⊥DE于点F;
(2)用(1)中所画的三块图形经过旋转或平移拼出一个四边形(无继隙无重叠).并用三角板画出示意图:
(3)请判断(2)中所拼的四边形的形状,并说明理由
18.(2023·鄂州)某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点F(0,14a)的距离PF,始终等于它到定直线l:y=−14a的距离PN (该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,y=−14a叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为FH的中点,FH=2OF=12a.例如,抛物线y=2x2,其焦点坐标为F(0,18),准线方程为l:y=−18,其中PF=PN,FH=2OF=14.
(1)【基础训练】请分别直接写出抛物线y=14x2的焦点坐标和准线l的方程: , ;
(2)【技能训练】如图2,已知抛物线y=14x2上一点P(x0,y0)(x0>0)到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
(3)【能力提升】如图3,已知抛物线y=14x2的焦点为F,准线方程为l.直线m:y=12x−3交y轴于点C,抛物线上动点P到x轴的距离为d1,到直线m的距离为d2,请直接写出d1+d2的最小值;
(4)【拓展延伸】该兴趣小组继续探究还发现:若将抛物线y=ax2(a>0)平移至y=a(x-h)2+k(a>0).
抛物线y=a(x-h)2+k(a>0)内有一定点F(h,k+14a),直线l过点M(h,k−14a)且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离PP1始终等于点P到点F的距离(该结论不需要证明).例如:抛物线y=2(x-1)2+3上的动点P到点F(1,258)的距离等于点P到直线l:y=238的距离.
请阅读上面的材料,探究下题:
如图4,点D(-1,32)是第二象限内一定点,点P是抛物线y=14x2-1上一动点.当PO+PD取最小值时,请求出△POD的面积.
相关试卷
这是一份2024年四川省中考数学二轮备考之真题演练图形认识初步、相交线与平行线,共11页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。
这是一份2024年四川省中考数学二轮备考之真题演练图形认识初步、相交线与平行线,文件包含2024年四川省中考数学二轮备考之真题演练图形认识初步相交线与平行线解析docx、2024年四川省中考数学二轮备考之真题演练图形认识初步相交线与平行线docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份2024年四川省中考数学二轮备考之真题演练图形认识初步、相交线与平行线 (解析),共42页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。