专题11 全等三角形中的一线三等角模型(教师版)-中考数学几何模型重点突破讲练
展开这是一份专题11 全等三角形中的一线三等角模型(教师版)-中考数学几何模型重点突破讲练,共30页。
【模型1】三垂直全等模型
【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。
【模型2】一线三直角全等模型
【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。
【模型3】一线三等角与一组对应边相等全等模型
【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。
【例1】如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于( )
A.6cmB.8cmC.10cmD.4cm
【答案】B
【分析】根据题意证明即可得出结论.
【解析】解:∵AB⊥BD,ED⊥BD,
∴,
∵∠ACE=90°,
∴,
∵,
∴,
在和中,
,
∴,
∴,,
∴,
故选:B.
【例2】如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则__________.
【答案】7
【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;
【解析】解:∵BE⊥l,CF⊥l,
∴∠AEB=∠CFA=90°.
∴∠EAB+∠EBA=90°.
又∵∠BAC=90°,
∴∠EAB+∠CAF=90°.
∴∠EBA=∠CAF.
在△AEB和△CFA中
∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,
∴△AEB≌△CFA.
∴AE=CF,BE=AF.
∴AE+AF=BE+CF.
∴EF=BE+CF.
∵,
∴;
故答案为:7.
【例3】(1)观察理解:
如图1,∠ACB=90°,AC=BC,直线l过点C,点A,B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,求证:△AEC≌△CDB.
(2)理解应用:
如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.
(3)类比探究:
①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;
②如图4,直角梯形ABCD中,,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆时针旋转90°至DE,△AED的面积为 .
【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1
【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;
(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG≌△CHA,从而得到EM=GN,可得到△EMI≌△GNI,从而得到EI=IG,即可求证;
(3)①由(1)得:△AEC≌△CDB,可得CE=BD,AE=CD,即可;②过点C作CP⊥AD交AD延长线于点P,过点E作EQ⊥AD交AD延长线于点Q,根据旋转的性质可得根据题意得:∠CDE=90°,CD=DE,再由(1)可得△CDP≌△DEQ,从而得到DP=EQ,然后根据两平行线间的距离,可得AP=BC,进而得到PD=1,即可求解.
【解析】(1)证明:∵BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
又∵∠ACB=90°
∴∠A+∠ACE=∠ACE+∠BCD=90°,
∴∠A=∠BCD,
在△AEC和△CDB中,
∴△AEC≌△CDB(AAS);
(2)证明:分别过点E、G向HI作垂线,垂足分别为M、N,
由(1)得:△EMA≌△AHB,△ANG≌△CHA,
∴EM=AH,GN=AH,
∴EM=GN,
在△EMI和△GNI中,
∴△EMI≌△GNI(AAS);
∴EI=IG,
即I是EG的中点;
(3)解:①由(1)得:△AEC≌△CDB,
∴CE=BD,AE=CD,
∵ED=CD-CE,
∴ED=EA-BD ;
故答案为:ED=EA-BD
②如图,过点C作CP⊥AD交AD延长线于点P,过点E作EQ⊥AD交AD延长线于点Q,
根据题意得:∠CDE=90°,CD=DE,
由(1)得:△CDP≌△DEQ,
∴DP=EQ,
直角梯形ABCD中,,AB⊥BC,
∴AB⊥AD,
∴AB∥CP,
∴BC⊥CP,
∵BC=3,
∴AP=BC=3,
∵AD=2,
∴DP=AP-AD=1,
∴EQ=1,
∴△ADE的面积为.
故答案为:1
一、单选题
1.如图,点P,D分别是∠ABC边BA,BC上的点,且,.连结PD,以PD为边,在PD的右侧作等边△DPE,连结BE,则△BDE的面积为( )
A.B.2C.4D.
【答案】A
【分析】要求的面积,想到过点作,垂足为,因为题目已知,想到把放在直角三角形中,所以过点作,垂足为,利用勾股定理求出的长,最后证明即可解答.
【解析】解:过点作,垂足为,过点作,垂足为,
在中,,,
,
,
,
是等边三角形,
,,
,
,
,
,
,
,
,
的面积,
,
,
故选:A.
2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是( ).
A.cm2B.cm2C.cm2D.cm2
【答案】A
【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明△DAC≌△ECB得到CD=BE=2xcm,再利用勾股定理求解即可.
【解析】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,
由题意得:∠ACB=∠ADC=∠BEC=90°,
∴∠ACD+∠DAC=∠ACD+∠BCE=90°,
∴∠DAC=∠ECB,
又∵AC=CB,
∴△DAC≌△ECB(AAS),
∴CD=BE=2xcm,
∵,,
∴,
∴,
故选A.
3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a=8cm,则DE的长为( )
A.40cmB.48cmC.56cmD.64cm
【答案】C
【分析】由等腰直角三角形的性质可得∠ACB=90°,AC=CB,因此可以考虑证明△ACD和△CBE全等,可以证明DE的长为7块砖的厚度的和.
【解析】解:由题意得∠ADC=∠CEB=∠ACB=90°,AC=CB,
∴∠ACD=90°﹣∠BCE=∠CBE,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=3a,AD=CE=4a,
∴DE=CD+CE=3a+4a=7a,
∵a=8cm,
∴7a=56cm,
∴DE=56cm,
故选C.
二、填空题
4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于 _____.
【答案】
【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.
【解析】解:如图,连接PO,并延长交l2于点H,
∵l1⊥l3,l2⊥l3,
∴l1∥l3,∠APC=∠BQC=∠ACB=90°,
∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,
∴∠PAC=∠BCQ,
在△ACP和△CBQ中,
,
∴△ACP≌△CBQ(AAS),
∴AP=CQ,PC=BQ,
∴PC+CQ=AP+BQ=PQ=,
∵AP∥BQ,
∴∠OAP=∠OBH,
∵点O是斜边AB的中点,
∴AO=BO,
在△APO和△BHO中,
,
∴△APO≌△BHO(AAS),
∴AP=BH,OP=OH,
∴BH+BQ=AP+BQ=PQ,
∴PQ=QH=,
∵∠PQH=90°,
∴PH=PQ=12,
∵OP=OH,∠PQH=90°,
∴OQ=PH=6.
故答案为:6
5.如图,已知ABC是等腰直角三角形,∠ACB=90°,AD⊥DE于点D,BE⊥DE于点E,且点C在DE上,若AD=5,BE=8,则DE的长为_____.
【答案】13
【分析】先根据AD⊥DE,BE⊥DE,∠ADC=∠CEB=90°,则∠DAC+∠DCA=90°,△ABC是等腰直角三角形,∠ACB=90°,可得AC=CB,推出∠DAC=∠ECB,即可证明△DAC≌△ECB得到CE=AD=5,CD=BE=8,由此求解即可.
【解析】解:∵AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠DAC+∠DCA=90°,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴∠DCA+∠BCE=90°,AC=CB
∴∠DAC=∠ECB,
∴△DAC≌△ECB(AAS),
∴CE=AD=5,CD=BE=8,
∴DE=CD+CE=13,
故答案为:13.
三、解答题
6.已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB=CD,求证:BC=DE.
【答案】见解析
【分析】根据直角三角形全等的判定方法,ASA即可判定三角形全等.
【解析】证明:∵AB⊥BD,ED⊥BD,AC⊥CE(已知)
∴∠ACE=∠B=∠D=90°(垂直的意义)
∵∠BCA+∠DCE+∠ACE=180°(平角的意义)
∠ACE=90°(已证)
∴∠BCA+∠DCE=90°(等式性质)
∵∠BCA+∠A+∠B=180°(三角形内角和等于180°)
∠B=90°(已证)
∴∠BCA+∠A=90°(等式性质)
∴∠DCE=∠A (同角的余角相等)
在△ABC和△CDE中,
,
∴△ABC≌△CDE(ASA)
∴BC=DE(全等三角形对应边相等)
7.如图,∠B=∠C=∠FDE=80°,DF=DE,BF=1.5cm,CE=2cm,求BC的长.
【答案】3.5
【分析】由平角定义及三角形内角和定理解得,继而证明,得到,最后根据线段的和差解题.
【解析】解:∠B=∠C=∠FDE=80°,
在与中,
.
8.感知:(1)数学课上,老师给出了一个模型:
如图1,,由,,可得 ;又因为,可得,进而得到______.我们把这个模型称为“一线三等角”模型.
应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在中,,,点P是BC边上的一个动点(不与B、C重合),点D是AC边上的一个动点,且.
①求证:;
②当点P为BC中点时,求CD的长;
拓展:(3)在(2)的条件下如图2,当为等腰三角形时,请直接写出BP的长.
【答案】感知:(1);应用:(2)①见解析;②3.6;拓展:(3)2或
【分析】(1)根据相似三角形的性质,即可求解;
(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;
②根据相似三角形的性质计算,即可求解;
(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.
【解析】感知:(1)∵△ABC∽△DAE,
∴,
∴,
故答案为:;
应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,
∴∠BAP=∠CPD,
∵AB=AC,
∴∠B=∠C,
∴△ABP∽△PCD;
②BC=12,点P为BC中点,
∴BP=PC=6,
·∵△ABP∽△PCD,
∴,即,
解得:CD=3.6;
拓展:(3)当PA=PD时,△ABP≌△PCD,
∴PC=AB=10,
∴BP=BC-PC=12-10=2;
当AP=AD时,∠ADP=∠APD,
∵∠APD=∠B=∠C,
∴∠ADP=∠C,不合题意,
∴AP≠AD;
当DA=DP时,∠DAP=∠APD=∠B,
∵∠C=∠C,
∴△BCA∽△ACP,
∴,即,
解得:,
∴,
综上所述,当为等腰三角形时, BP的长为2或 .
9.问题背景:(1)如图①,已知中,,,直线m经过点A,直线m,直线m,垂足分别为点D,E,易证:______+______.
(2)拓展延伸:如图②,将(1)中的条件改为:在中,,D,A,E三点都在直线m上,并且有,请求出DE,BD,CE三条线段的数量关系,并证明.
(3)实际应用:如图③,在中,,,点C的坐标为,点A的坐标为,请直接写出B点的坐标.
【答案】(1)BD;CE;证明见详解;(2)DE=BD+CE;证明见详解;(3)点B的坐标为.
【分析】(1)根据全等三角形的判定和性质得到,,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明,证明,根据全等三角形的性质得到,,结合图形解答即可;
(3)根据,得到,,根据坐标与图形性质解答即可.
【解析】(1)证明:∵,,
∴,
∵,
∴,
∵,
∴,
在和中
,
∴,
∴,,
∴,
即:,
故答案为:BD;CE;
(2)解:数量关系: ,
证明:在中,,
∵,,
∴,
在和中,
∴,
∴,,
∴;
(3)解:如图,作轴于E,轴于F,
由(1)可知,,
∴,,
∴,
∴点B的坐标为.
10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.
(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是 ;
(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.
【答案】(1)DE=BD+CE.
(2)DE=BD+CE仍然成立,证明见解析
【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;
(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.
【解析】(1)解:DE=BD+CE,理由如下,
∵∠BDA=∠BAC=∠AEC=90°,
∴∠BAD+∠EAC=∠BAD+∠DBA=90°,
∴∠DBA=∠EAC,
∵AB=AC,
∴△DBA≌△EAC(AAS),
∴AD=CE,BD=AE,
∴DE=AD+AE=BD+CE,
故答案为:DE=BD+CE.
(2)DE=BD+CE仍然成立,理由如下,
∵∠BDA=∠BAC=∠AEC=α,
∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,
∴∠DBA=∠EAC,
∵AB=AC,
∴△DBA≌△EAC(AAS),
∴BD=AE,AD=CE,
∴DE=AD+AE=BD+CE;
11.如图,于点,点在直线上,.
(1)如图1,若点在线段上,判断与的数量关系和位置关系,并说明理由;
(2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.
【答案】(1)DF=DC,DF⊥DC;理由见解析
(2)成立,理由见解析
【分析】(1)先证△ADF≌△BCD,得DF=DC,,再证∠FDC=90°即可得垂直;
(2)先证△ADF≌△BCD,得DF=DC,,再证∠FDC=90°即可得垂直.
【解析】(1)解:∵,
∴,
在△ADF与△BCD中,
∴△ADF≌△BCD,
∴DF=DC,,
∵∠BDC+∠BCD=90°,
∴∠BDC+∠ADF=90°,
∴∠FDC=90°,即DF⊥DC.
(2)∵,
∴,
在△ADF与△BCD中,
∴△ADF≌△BCD,
∴DF=DC,,
∵∠BDC+∠BCD=90°,
∴∠BDC+∠ADF=90°,
∴∠FDC=90°,即DF⊥DC.
12.在直线上依次取互不重合的三个点,在直线上方有,且满足.
(1)如图1,当时,猜想线段之间的数量关系是____________;
(2)如图2,当时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;
(3)应用:如图3,在中,是钝角,,,直线与的延长线交于点,若,的面积是12,求与的面积之和.
【答案】(1)DE=BD+CE
(2)DE=BD+CE仍然成立,理由见解析
(3)△FBD与△ACE的面积之和为4
【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;
(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;
(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,由AAS证得△ADB≌△CAE,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ABF即可得出结果.
【解析】(1)解:DE=BD+CE,理由如下,
∵∠BDA=∠BAC=∠AEC=90°,
∴∠BAD+∠EAC=∠BAD+∠DBA=90°,
∴∠DBA=∠EAC,
∵AB=AC,
∴△DBA≌△EAC(AAS),
∴AD=CE,BD=AE,
∴DE=AD+AE=BD+CE,
故答案为:DE=BD+CE.
(2)DE=BD+CE仍然成立,理由如下,
∵∠BDA=∠BAC=∠AEC=α,
∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,
∴∠DBA=∠EAC,
∵AB=AC,
∴△DBA≌△EAC(AAS),
∴BD=AE,AD=CE,
∴DE=AD+AE=BD+CE;
(3)解:∵∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,
∴∠CAE=∠ABD,
在△ABD和△CAE中,
,
∴△ABD≌△CAE(AAS),
∴S△ABD=S△CAE,
设△ABC的底边BC上的高为h,则△ABF的底边BF上的高为h,
∴S△ABC=BC•h=12,S△ABF=BF•h,
∵BC=3BF,
∴S△ABF=4,
∵S△ABF=S△BDF+S△ABD=S△FBD+S△ACE=4,
∴△FBD与△ACE的面积之和为4.
13.通过对下面数学模型的研究学习,解决下列问题:
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC= ,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;
(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;
(深入探究)
(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,则有S1 S2(填“>、=、<”)
【答案】(1)DE;(2)见解析;(3)=
【分析】(1)根据全等三角形的性质可直接进行求解;
(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,进而可得∠BAF=∠ADH,然后可证△ABF≌△DAH,则有AF=DH,进而可得DH=EQ,通过证明△DHG≌△EQG可求解问题;
(3)过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M,由题意易得∠ADC=∠90°,AD=DC,DF=DE,然后可得∠ADO=∠DCM,则有△AOD≌△DMC,△FOD≌△DNE,进而可得OD=NE,通过证明△ENP≌△CMP及等积法可进行求解问题.
【解析】解:(1)∵,∴;
(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,如图所示:
∴,
∵,
∴,
∴,
∵,
∴,
∵,
∴△ABF≌△DAH,
∴AF=DH,
同理可知AF=EQ,
∴DH=EQ,
∵DH⊥FG,EQ⊥FG,
∴,
∵
∴△DHG≌△EQG,
∴DG=EG,即点G是DE的中点;
(3),理由如下:如图所示,过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M
∵四边形ABCD与四边形DEGF都是正方形
∴∠ADC=∠90°,AD=DC,DF=DE
∵DO⊥AF,CM⊥OD,
∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,
又∵∠ODA+∠CDM=90°,
∴∠ADO=∠DCM,
∴△AOD≌△DMC,
∴,OD=MC,
同理可以证明△FOD≌△DNE,
∴,OD=NE,
∴MC =NE,
∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,
∴△ENP≌△CMP,
∴,
∵,
∴,
∴即.
14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在中,,,直线l经过点A,直线l,直线l,垂足分别为点D,E.求证:.
(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中,,D,A,E三点都在直线l上,并且有,其中为任意锐角或钝角.请问结论是否成立?若成立,请你给出证明;若不成立,请说明理由.
(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若,则______.
【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5
【分析】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;
(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;
(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.
【解析】解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
(2)解:成立.
理由:如图2中,
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠DBA=∠CAE,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.
∴∠EMI=∠GNI=90°
由(1)和(2)的结论可知EM=AH=GN
∴EM=GN
在△EMI和△GNI中,
,
∴△EMI≌△GNI(AAS),
∴EI=GI,
∴I是EG的中点.
∴S△AEI=S△AEG=3.5.
故答案为:3.5.
15.(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;
(2)模型应用:
①已知直线y=x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;
②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若△APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.
【答案】(1)见解析;(2);(3)或或
【分析】(1)由条件可求得,利用可证明;
(2)由直线解析式可求得、的坐标,利用模型结论可得,,从而可求得点坐标,利用待定系数法可求得直线的解析式;
(3)分两种情况考虑:如图2所示,当时,,设D点坐标为,利用三角形全等得到,易得D点坐标;如图3所示,当时,,设点P的坐标为,表示出D点坐标为,列出关于m的方程,求出m的值,即可确定出D点坐标;如图4所示,当时,时,同理求出D的坐标.
【解析】解:(1)由题意可得,,
∴,
∴,
在和中
,
∴;
(2)过点作轴于点,如图2,
在中,令可求得,令可求得,
∴,
同(1)可证得,
∴,,
∴,
∴且,
设直线AC解析式为,把C点坐标代入可得,解得,
∴直线AC解析式为;
(3)如图2,
当时,,
过点作于E,过点D作于F,
同理可得:
设D点坐标为,则,
∵,即,解得,
可得D点坐标;
如图3,当时,,
过点P作于E,过点D作于,
设点P的坐标为,同理可得:,
∴,,
∴D点坐标为,
∴,得,
∴D点坐标;
如图4,当时,时,同理可得,
设,则,,
则,
∵
∴,解得,
∴点坐标,
综上可知满足条件的点D的坐标分别为或或.
相关试卷
这是一份专题22 对角互补模型(教师版)-中考数学几何模型重点突破讲练,共41页。
这是一份专题17 旋转相似模型(教师版)-中考数学几何模型重点突破讲练,共33页。
这是一份专题16 一线三等角相似模型(教师版)-中考数学几何模型重点突破讲练,共29页。