搜索
    上传资料 赚现金
    英语朗读宝

    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件

    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第1页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第2页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第3页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第4页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第5页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第6页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第7页
    5.2.1 二次函数y=ax2(a≠0)的图象和性质 苏科版九年级数学下册导学课件第8页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版九年级下册5.2 二次函数的图象和性质图片课件ppt

    展开

    这是一份苏科版九年级下册5.2 二次函数的图象和性质图片课件ppt,共23页。PPT课件主要包含了逐点学练,本节小结,作业提升,本节要点,学习流程,知识点,解列表,a>b>d>c等内容,欢迎下载使用。
    二次函数y=ax2 的图象的画法二次函数y=ax2 的图象和性质
    二次函数y=ax2的图象的画法
    1.用描点法画函数y=ax2(a ≠ 0)的图象的一般步骤(1)列表:列表时,自变量x 的取值应有一定的代表性,并且所对应的函数值不能太大也不能太小,以便于描点和全面反映图象情况. 作图选点时,一般应先找出对称轴,然后在对称轴的两侧对称选取,应以计算简单、描点方便为原则.
    (2)描点:一般来说,点取得越多、越密集,画出的图象就越准确. 实际画图时,一般取顶点及对称轴两侧对称的两对点,共5 个点,用“五点法”快速准确地作出函数图象,有时也会在对称轴的两侧各取三个点画图.(3)连线:按自变量由小到大(或由大到小)的顺序,依次用平滑的曲线连接各点.
    2. 抛物线二次函数y=ax2的图象是一条抛物线,抛物线的顶点在原点、对称轴是y 轴.当a> 0 时,抛物线的开口向上,顶点是抛物线的最低点;当a< 0 时,抛物线的开口向下,顶点是抛物线的最高点.
    特别提醒:●用描点法可以画出任意一个二次函数的图象.用描点法画出的图象只是二次函数图象的一部分,并且是近似的.在画二次函数图象时,画的线必须平滑,顶端不能画成尖的,一般来说,选点越多,图象越精确,但也要具体问题具体分析.●抛物线是向两方无限延伸的,画图时要画“出头”,左右两侧必须关于对称轴对称.
    在同一平面直角坐标系中作出y= x2,y=- x2 和y= x2的图象.
    解题秘方:用描点法,按列表→描点→连线的顺序作图.
    描点、连线 ,即得三个函数的图象,如图5.2-1.
    作图通法:①列表、描点、连线是画函数图象的基本方法,用这种方法可以画出任意一个函数的图象.②利用列表、描点、连线画二次函数y=ax2的图象时,列表中的x的值要在坐标原点(0,0)的左右两边对称选取, ③连线时,按照自变量由小到大(或由大到小)的顺序,并且用光滑的曲线顺次连接,初始点和末端点处要注意适当“向外延伸”,切忌用线段连接或漏点、跨点连接
    注意:(1)由表格可知,在画y= x2的图象时,我们可以先描出(0,0)及y轴一侧的点,然后根据对称性描出y轴另一侧的点,然后连线即可.(2)由图象可知,二次函数y=- x2的图象可以由y= x2的图象沿x轴翻折,或绕其顶点旋转180°得到.
    二次函数y=ax2的图象和性质
    二次函数y = ax2(a ≠ 0)的图象和性质
    要点解读:①判断二次函数的增减性的技巧:从抛物线的对称轴分开,自左向右看,“上坡路”就是y随x的增大而增大,“下坡路”就是y随x 的增大而减小.②在二次函数y=ax(2a≠0)中,a的正负性决定开口方向, |a|决定开口的大小.|a|越大,抛物线开口越小,反之,|a|越小,抛物线开口越大.③二次函数y=-ax(2a≠0)与y=ax2 (a≠0)的图象关于x 轴对称.
    如图5.2-2, 四个二次函数的图象分别对应① y=ax2;② y=bx2;③ y=cx2;④ y=dx2,则a,b,c,d 的大小关系为______________.
    解题秘方:紧扣“a 的符号”及“|a| 的大小”采用数形结合思想进行解答.
    解:由抛物线的开口方向,知a>0,b>0,c<0,d<0,由抛物线的开口大小,知|a|>|b|,|c|>|d|,因此a>b,c<d. ∴ a> b>d>c.
    巧题妙解:如图5.2-3,当x=1 时,四个函数值分别等于二次项系数,∴ 直线x=1 与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),∴ a>b>d>c.
    在同一坐标系中,抛物线y=3x2,y= x2,y=- x2 的共同特点是( )A. 关于y 轴对称,开口向上B. 关于y 轴对称,y 随x 的增大而增大C. 关于y 轴对称,y 随x 的增大而减小D. 关于y 轴对称,顶点是原点
    解题秘方:按先由抛物线表达式中a 的值确定开口方向,再确定对称轴、顶点、增减性,由此即可得出结论.
    解法提醒:在分析二次函数的增减性时,都是以对称轴为分界线进行讨论:●开口向下的抛物线,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小;●开口向上的抛物线,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x 的增大而增大.
    解:∵ 3 > 0, > 0,- < 0,∴三条抛物线有的开口向上,有的开口向下.∵三条抛物线表达式均符合y=ax2 的形式,∴三条抛物线的对称轴均为y轴,且顶点均为原点.故选D.
    二次函数y = ax2(a≠0)的图象和性质

    相关课件

    苏科版九年级下册5.2 二次函数的图象和性质背景图课件ppt:

    这是一份苏科版九年级下册5.2 二次函数的图象和性质背景图课件ppt,共22页。PPT课件主要包含了逐点学练,本节小结,作业提升,本节要点,学习流程,知识点,配方过程等内容,欢迎下载使用。

    数学华师大版第26章 二次函数26.2 二次函数的图象与性质1. 二次函数y=ax2的图象与性质课文配套课件ppt:

    这是一份数学华师大版第26章 二次函数26.2 二次函数的图象与性质1. 二次函数y=ax2的图象与性质课文配套课件ppt,共27页。PPT课件主要包含了逐点学练,本节小结,作业提升,本节要点,学习流程,知识点,解列表,用光滑曲线顺次连结等内容,欢迎下载使用。

    数学九年级上册22.1.2 二次函数y=ax2的图象和性质示范课ppt课件:

    这是一份数学九年级上册22.1.2 二次函数y=ax2的图象和性质示范课ppt课件,共19页。PPT课件主要包含了二次函数,二次函数的图像,画函数yx2的图像,解1列表,2描点,3连线,yx2,y-x2,y-x2,例题与练习等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map