所属成套资源:苏科版八年级数学下册尖子生培优必做【精品专题】(原卷版+解析)
苏科版八年级数学下册尖子生培优必做 专题9.16四边形与动点问题(重难点培优30题)(原卷版+解析)
展开
这是一份苏科版八年级数学下册尖子生培优必做 专题9.16四边形与动点问题(重难点培优30题)(原卷版+解析),共66页。
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【苏科版】专题9.16四边形与动点问题大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________一、解答题1.(2022春·江苏连云港·八年级校考阶段练习)如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.2.(2022春·江苏无锡·八年级校考阶段练习)已知,如图,O为坐标原点,四边形OABC为矩形,A(20,0),C(0,8),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设动点P的运动时间为t秒.(1)当t为何值时,四边形PODB是平行四边形?(2)在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由.(3)在线段PB上有一点M,且PM=10,当P运动 秒时,四边形OAMP的周长最小, 并在图②画出点M的位置.3.(2022春·江苏苏州·八年级苏州市立达中学校校考期中)如图,▱ABCD中,∠B=2∠A,动点P、Q、M、N分别从点A、B、C、D同时出发,沿平行四边形的边,分别向点B、C、D、A匀速运动,运动时间记为t,当其中一个点到达终点时,其余各点均停止运动,连接PQ,QM,MN,NP.已知AB=6cm,BC=4.5cm,动点P、M的速度均是2cm/s,动点Q、N的速度均是1cms,(1)AP=_______cm,CQ=_______cm(用含t的代数式表示)(2)在点P、Q、M、N的整个运动过程中,四边形PQMN一定会是一种特殊的四边形吗?如果是,指出并证明你的结论,如果不是,说明理由.(3)在点P、Q、M、N的运动过程中,四边形PQMN能成为菱形吗?如果能,求出t的值,如果不能,说明理由.4.(2022春·江苏扬州·八年级校联考期中)如图,在平面直角坐标系中,四边形AOCB的点O在坐标原点上,点A在y轴上,AB∥OC,点B的坐标为(15,8),点C的坐标为(21,0),动点M从点A沿AB方向以每秒1个长度单位的速度运动,动点N从C点沿CO的方向以每秒2个长度单位的速度运动.点M、N同时出发,一点到达终点时,另一点也停止运动,设运动时间为t秒.(1)当t=2时,点M的坐标为 ,点N的坐标为 ;(2)当t为何值时,四边形AONM是矩形?5.(2022春·江苏徐州·八年级校考阶段练习)如图,在长方形ABCD中,AB=6cm,BC=12cm,点P从A点出发沿A-B-C-D移动,且点P的速度是2cm/s,设运动的时间为t秒,若点P与点A、点D连线所围成的三角形PAD的面积表示为S1.(1)当t=2秒时,求S1 =______cm2;(2)当S1=12cm2时,则t=______秒;(3)如图2,若在点P运动的同时,点Q也从C点同时出发,沿C-B运动,速度为1cm/s,若点Q与点C、点D连线所围成的三角形QCD的面积表示为S2,当|S1-S2|=18时,求t的值.6.(2021秋·江苏常州·八年级常州实验初中校考阶段练习)如图,在矩形ABCD中,∠B=∠C=90°,AB=DC=20cm,BC=15cm,点E为AB的中点.如果点P在线段BC上以5cm/秒的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,且P、Q两点仍然同时出发,当点Q的运动速度为多少时,△BPE与△CQP全等?7.(2021春·江苏无锡·八年级统考期中)已知,如图,在矩形ABCD中,AB=1,BC=2,点P是直线BC上一个动点,连接AP,作DQ⊥AP于点Q.(1)AP•DQ= ;(2)以AP、AD为邻边作平行四边形APMD,当平行四边形APMD是菱形时,求PQ的长;(3)连接DP,以AP、DP为邻边作平行四边形APDN,当对角线PN取得最小值时,求DQ的长.8.(2021春·江苏苏州·八年级常熟市第一中学校考阶段练习)在四边形ABCD中,AD//BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t.(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?9.(2021春·江苏连云港·八年级统考期中)如图所示,AD//BC,∠BAD=90°,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C作CF⊥BE于点F.(1)线段BF与图中哪条线段相等?写出来并加以证明:(2)若AB=8,BC=10,P从E沿直线ED方向运动,Q从C出发沿直线CB方向运动,两点同时出发且速度均为每秒1个单位.①求出当t为何值时,四边形EPCQ是矩形;②求出当t为何值时,四边形EPCQ是菱形.10.(2021春·江苏镇江·八年级统考阶段练习)如图,O为坐标原点,四边形OABC为矩形,A10,0,C0,4,点D是线段OA的中点,点P在线段BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在直线BC上是否存在一点Q,使得点O、点D、点P、点Q构成菱形,若存在,求t的值;若不存在,请说明理由.11.(2020·江苏苏州·八年级统考期中)如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.(1)求DM的长;(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(3)在(2)的条件下,当点P在边AB上运动时,是否存在这样的t的值,使∠MPB与∠BCD互为余角?若存在,求出t的值;若不存在,请说明理由.12.(2021秋·江苏扬州·八年级校考阶段练习)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动(点P运动到点C处时停止运动),设点P的运动时间为ts.(1)PC=_____________cm.(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动(点Q运动到点D处时停止运动,P,Q两点中有一点停止运动后另一点也停止运动),是否存在这样的υ值使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.13.(2020秋·江苏扬州·八年级校考阶段练习)如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,①则当t为何值时,△PAE为等腰三角形?②当t为何值时,△PAE为直角三角形,直接写出答案.14.(2020秋·江苏扬州·八年级校考期中)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,①线段CE的长为______;②当EP平分∠AEC时,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值.15.(2020秋·江苏镇江·八年级统考期中)如图,在长方形ABCD中,AD=3cm,AB=7cm,E为边AB上任一点(不与A、B重合),从点B出发,以1cm/s向终点A运动,同时动点F从点D出发,以x cm/s向终点C运动,运动的时间为t s.(注:长方形的对边平行且相等,每个角都是90°)(1)若t=4,则CE= ;(2)若x=2,当 t为何值时点E在CF的垂直平分线上;(3)连接BF,直接写出点C与点E关于BF对称时x与t的值.16.(2020春·江苏·八年级校考阶段练习)如图,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当t=5时,AP=________.(2)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(3)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.17.(2022春·江苏无锡·八年级宜兴市树人中学校考阶段练习)如图,在平面直角坐标系中,点A的坐标为(﹣6,0),点B在y轴正半轴上,∠ABO=30°,动点D从点A出发沿着射线AB方向以每秒3个单位的速度运动,过点D作DE⊥y轴,交y轴于点E,同时,动点F从定点C (1,0)出发沿x轴正方向以每秒1个单位的速度运动,连结DO,EF,设运动时间为t秒.(1)当点D运动到线段AB的中点时.①t的值为 ;②判断四边形DOFE是否是平行四边形,请说明理由.(2)点D在运动过程中,若以点D,O,F,E为顶点的四边形是矩形,求出满足条件的t的值.18.(2020春·江苏连云港·八年级统考期中)在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ= (用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.19.(2019春·江苏连云港·八年级阶段练习)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.20.(2020春·江苏徐州·八年级统考期中)如图,平面直角坐标系xOy中,点O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)直接写出坐标:D( , );(2)当四边形PODB是平行四边形时,求t的值;(3)在平面直角坐标系内是否存在点Q,使得以O、P、D、Q为顶点四边形为菱形,若存在,请直接写出Q点坐标;若不存在,请说明理由.21.(2022春·江苏镇江·八年级丹阳市第八中学校考阶段练习)如图所示,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上.点C的坐标为(4,23).动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.(1)①点B的坐标 .②求菱形ABCD的面积.(2)当t=3时,问线段AC上是否存在点E,使得PE+DE最小,如果存在,求出PE+DE 最小值;如果不存在,请说明理由.(3)若点P到AC的距离是1,则点P运动的时间t等于 . 22.(2020春·江苏扬州·八年级校考期中)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)若BD=8cm,AC=12cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?23.(2021春·江苏苏州·八年级常熟市第一中学校考阶段练习)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为xcm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t= s时,四边形EBFB'为正方形;(2)当x为何值时,以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形可能全等?(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.24.(2020秋·江苏淮安·八年级统考期末)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A6,0,B6,4,D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0S2,当|S1-S2|=18时,则36-3t=18,t2=6;③当点P在CD边上时,如下图:S1 =12×12×24−2t=144−12t ,S2 =12×6×t=3t,此时无法判断S1与S2的大小,当S1-S2=18时,则144-12t-3t=18,t3=8.4(舍去)当S2-S1=18时,则3t-(144-12t)=18,t4=10.8答:t的值为2或6或10.8秒.【点睛】本题是三角形综合题,考查矩形的性质,三角形面积,绝对值的性质等知识,解题关键是运用分类讨论的思想.6.(2023秋·江苏常州·八年级常州实验初中校考阶段练习)如图,在矩形ABCD中,∠B=∠C=90°,AB=DC=20cm,BC=15cm,点E为AB的中点.如果点P在线段BC上以5cm/秒的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,且P、Q两点仍然同时出发,当点Q的运动速度为多少时,△BPE与△CQP全等?【答案】(1)全等,理由见解析;(2)203厘米/秒【分析】(1)速度相等,运动的时间相等,所以距离相等,根据全等三角形的判定定理可证明.(2)因为运动时间一样,运动速度不相等,所以BP≠CQ,只有BP=CP时才全等,根据此可求解.【详解】解:(1)全等;∵t=1秒,∴BP=CQ=5×1=5厘米,∵矩形ABCD中,AB=DC=20cm,BC=15cm,点E为AB的中点.∴PC=BE=10厘米,又∵∠B=∠C,∴△BPE≌△CQP(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,又∵△BPE≌△CPQ,∠B=∠C,则BP=PC,QC=BE=10,而BP=5t,CP=15﹣5t,∴5t=15﹣5t∴点P,点Q运动的时间t=32秒,∴1032=203( 厘米/秒).点Q的运动速度为203厘米/秒时,△BPE与△CQP全等.【点睛】本题考查矩形的动点问题,解题关键是利用速度和运动时间表示线段长,关键全等三角形的条件列方程.7.(2023春·江苏无锡·八年级统考期中)已知,如图,在矩形ABCD中,AB=1,BC=2,点P是直线BC上一个动点,连接AP,作DQ⊥AP于点Q.(1)AP•DQ= ;(2)以AP、AD为邻边作平行四边形APMD,当平行四边形APMD是菱形时,求PQ的长;(3)连接DP,以AP、DP为邻边作平行四边形APDN,当对角线PN取得最小值时,求DQ的长.【答案】(1)2;(2)2﹣3;(3)2【分析】(1)利用面积法求解即可.(2)利用(1)中结论求出DQ,再利用勾股定理求出AQ,可得结论.(3)根据四边形APDN是平行四边形,推出AM=DM,PM=MN,可得PN=2PM,根据垂线段最短可知,当PM⊥AD时,PN的值最小.【详解】解:(1)如图1中,连接DP.∵ S△APD=12S矩形ABCD=12×1×2=1,DQ⊥AP,∴ 12•AP•DQ=1,∴AP•DQ=2.故答案为:2.(2)如图2中,∵四边形APMD是菱形,∴AP=AD=BC=2,∵AP•DQ=2,∴DQ=1,在Rt△ADQ中,AQ=AD2−DQ2=22−12=3,∴PQ=AP-AQ=2﹣3.(3)如图3中,设PN交AD于M.∵四边形APDN是平行四边形,∴AM=DM,PM=MN,∴PN=2PM,根据垂线段最短可知,当PM⊥AD时,PN的值最小,此时PB=PC=1,∴PA=AB2+BP2=12+12=2,∵DQ•AP=2,∴DQ=22=2.【点睛】本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,勾股定理,垂线段最短等知识,解题的关键是学会用面积法解决问题和利用垂线段最短解决问题.8.(2023春·江苏苏州·八年级常熟市第一中学校考阶段练习)在四边形ABCD中,AD//BC,BC⊥CD,AD=6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t.(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?【答案】(1)t=4(2)t=4或43【分析】(1)当DE=CF时,四边形EFCD为矩形,列出方程即可解决问题;(2)分两种情形列出方程即可解决问题;【详解】解:(1)当DE=CF时,四边形EFCD为矩形,则有6−t=10−2t,解得t=4,答:t=4s时,四边形EFCD为矩形.(2)①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=4−2t,解得t=43,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t−4,解得t=4,综上所述,t=4或43s时,以A、M、E、F为顶点的四边形是平行四边形.【点睛】本题考查矩形判定和性质、平行四边形的判定和性质等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.9.(2023春·江苏连云港·八年级统考期中)如图所示,AD//BC,∠BAD=90°,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C作CF⊥BE于点F.(1)线段BF与图中哪条线段相等?写出来并加以证明:(2)若AB=8,BC=10,P从E沿直线ED方向运动,Q从C出发沿直线CB方向运动,两点同时出发且速度均为每秒1个单位.①求出当t为何值时,四边形EPCQ是矩形;②求出当t为何值时,四边形EPCQ是菱形.【答案】(1)BF=EA(2)①t=4②t=10【分析】(1)通过证明△BCF≌△EBA可判断BF=EA;(2)EP=t,CQ=t,先求出AE=6,再判断四边形EPCQ为平行四边形,①当CP⊥AD可判断平行四边形EPCQ为矩形,从而得到6+t=10;②作CH⊥AD于H,如图,当CD=CQ=ED=t可判断平行四边形EPCQ为菱形,则利用勾股定理得到82+(t−4)2=t2,然后分别解关于t的方程即可.【详解】解:(1)BF=AE.理由如下:∵AD∥BC,∴∠CBF=∠AEB,在△BCF和△EBA,∠BFC=∠A∠CBF=∠AEBBC=EB,∴△BCF≌△EBA,∴BF=EA;(2)EP=t,CQ=t,在Rt△ABE中,AB=8,BC=10,∴BE=10,AE=BE2−AB2=102−82=6,∵EP=CQ,EP∥CQ,∴四边形EPCQ为平行四边形,①当CP⊥AD时,∠CPE=90°,则平行四边形EPCQ为矩形,此时AP=BC=10,即6+t=10,解得t=4,即当t=4时,四边形EPCQ是矩形;②作CH⊥AD于H,如图,当CP=CQ=EP=t时,平行四边形EPCQ为菱形,而HP=t+6−10=t−4,在Rt△HPC中,82+(t−4)2=t2,解得t=10,即当t=10,四边形EPCQ是菱形.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形和菱形的判定.10.(2023春·江苏镇江·八年级统考阶段练习)如图,O为坐标原点,四边形OABC为矩形,A10,0,C0,4,点D是线段OA的中点,点P在线段BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在直线BC上是否存在一点Q,使得点O、点D、点P、点Q构成菱形,若存在,求t的值;若不存在,请说明理由.【答案】(1)5;(2)存在,3s或8s或2s【分析】(1)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值.(2)要使ODQP为菱形,可以得出PO=5,分三种情形讨论即可.【详解】解:(1)∵四边形PODB是平行四边形,∴PB=OD=5,∴PC=5,∴t=5;(2)∵点O、点D、点P、点Q构成菱形,当P,Q在线段CB上时,若点Q在点P左侧,∴OD=OQ=PQ=5,∴CQ=OQ2−OC2=3,∴CP=8,此时t=8;同理,若点Q在点P右侧,CQ=8,CP=3,此时t=3;当Q点在P的左边且在BC的延长线上时,同理:CQ=3,∴CP=2,此时t=2,综上所述,t=3s或8s或2s时,满足条件.【点睛】本题考查了矩形的性质,坐标与图形的性质,平行四边形的判定及性质,菱形的判定及性质,勾股定理的运用.11.(2020·江苏苏州·八年级统考期中)如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.(1)求DM的长;(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(3)在(2)的条件下,当点P在边AB上运动时,是否存在这样的t的值,使∠MPB与∠BCD互为余角?若存在,求出t的值;若不存在,请说明理由.【答案】(1)MD=52;(2)S与t的关系式为:S=−32t+154,0