终身会员
搜索
    上传资料 赚现金

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理3

    立即下载
    加入资料篮
    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理3第1页
    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理3第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理3

    展开

    这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理3,共4页。
    考点一 向量极化恒等式
    极化恒等式:a·b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))2-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a-b,2)))2.
    变式:(1)a·b=eq \f(a+b2,4)-eq \f(a-b2,4),
    a·b=eq \f(|a+b|2,4)-eq \f(|a-b|2,4).
    (2)如图,在△ABC中,设M为BC的中点,则Aeq \(B,\s\up6(→))·Aeq \(C,\s\up6(→))=eq \(AM,\s\up6(→))2-eq \f(1,4)eq \(CB,\s\up6(→))2=Aeq \(M,\s\up6(→))2-Meq \(B,\s\up6(→))2.
    例1 (1)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点.Beq \(A,\s\up6(→))·Ceq \(A,\s\up6(→))=4,Beq \(F,\s\up6(→))·Ceq \(F,\s\up6(→))=-1,则Beq \(E,\s\up6(→))·Ceq \(E,\s\up6(→))的值为________.
    (2)(2023·郑州模拟)如图所示,△ABC是边长为8的等边三角形,点P为AC边上的一个动点,长度为6的线段EF的中点为B,则eq \(PE,\s\up6(→))·eq \(PF,\s\up6(→))的取值范围是________.
    规律方法 利用向量的极化恒等式可以对数量积进行转化,体现了向量的几何属性,特别适合于以三角形为载体,含有线段中点的向量问题.
    跟踪演练1 (1)如图,△AOB为直角三角形,OA=1,OB=2,C为斜边AB的中点,P为线段OC的中点,则eq \(AP,\s\up6(→))·eq \(OP,\s\up6(→))等于( )
    A.1 B.eq \f(1,16) C.eq \f(1,4) D.-eq \f(1,2)
    (2)如图,正方形ABCD的边长为2,P为正方形ABCD内一点(包含边界),且PA⊥PB,则eq \(PC,\s\up6(→))·eq \(PD,\s\up6(→))的取值范围是________.
    考点二 平面向量“奔驰定理”
    定理:如图,已知P为△ABC内一点,则有S△PBC·eq \(PA,\s\up6(→))+S△PAC·eq \(PB,\s\up6(→))+S△PAB·eq \(PC,\s\up6(→))=0.
    例2 (1)已知O是△ABC内部一点,满足eq \(OA,\s\up6(→))+2eq \(OB,\s\up6(→))+meq \(OC,\s\up6(→))=0,且eq \f(S△AOB,S△ABC)=eq \f(4,7),则实数m等于( )
    A.2 B.3 C.4 D.5
    (2)(2023·重庆模拟)△ABC内一点O满足关系式S△OBC·eq \(OA,\s\up6(→))+S△OAC·eq \(OB,\s\up6(→))+S△OAB·eq \(OC,\s\up6(→))=0,即称为经典的“奔驰定理”,若△ABC的三边为a,b,c,现有a·eq \(OA,\s\up6(→))+b·eq \(OB,\s\up6(→))+c·eq \(OC,\s\up6(→))=0,则O为△ABC的( )
    A.外心 B.内心 C.重心 D.垂心
    易错提醒 利用平面向量“奔驰定理”解题时,要严格按照定理的格式,注意定理中的点P为△ABC内一点;定理中等式左边三个向量的系数之比对应三个三角形的面积之比.
    跟踪演练2 (1)如图,设O为△ABC内一点,且满足eq \(OA,\s\up6(→))+2eq \(OB,\s\up6(→))+3eq \(OC,\s\up6(→))=3eq \(AB,\s\up6(→))+2eq \(BC,\s\up6(→))+eq \(CA,\s\up6(→)),则eq \f(S△AOB,S△ABC)等于( )
    A.eq \f(2,5) B.eq \f(1,2) C.eq \f(1,6) D.eq \f(1,3)
    (2)(2023·安阳模拟)如图,已知O是△ABC的垂心,且eq \(OA,\s\up6(→))+2eq \(OB,\s\up6(→))+3eq \(OC,\s\up6(→))=0,则tan∠BAC∶tan∠ABC∶tan∠ACB等于( )
    A.1∶2∶3 B.1∶2∶4
    C.2∶3∶4 D.2∶3∶6
    考点三 等和(高)线定理
    等和(高)线
    平面内一组基底eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→))及任一向量eq \(OP′,\s\up6(—→)),eq \(OP′,\s\up6(—→))=λeq \(OA,\s\up6(→))+μeq \(OB,\s\up6(→))(λ,μ∈R),若点P′在直线AB上或在平行于AB的直线上,则λ+μ=k(定值);反之也成立,我们把直线AB以及与直线AB平行的直线称为等和(高)线.
    (1)当等和线恰为直线AB时,k=1;
    (2)当等和线在O点和直线AB之间时,k∈(0,1);
    (3)当直线AB在O点和等和线之间时,k∈(1,+∞);
    (4)当等和线过O点时,k=0;
    (5)若两等和线关于O点对称,则定值k1,k2互为相反数;
    (6)定值k的变化与等和线到O点的距离成正比.
    例3 在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若eq \(AP,\s\up6(→))=λeq \(AB,\s\up6(→))+μeq \(AD,\s\up6(→)),则λ+μ的最大值为( )
    A.3 B.2eq \r(2) C.eq \r(5) D.2
    规律方法 要注意等和(高)线定理的形式,解题时一般要先找到k=1时的等和(高)线,利用比例求其他的等和(高)线.
    跟踪演练3 如图,△BCD与△ABC的面积之比为2,点P是△BCD内任意一点(含边界),且eq \(AP,\s\up6(→))=λeq \(AB,\s\up6(→))+μeq \(AC,\s\up6(→)),则λ+μ的取值范围为( )
    A.[2,3] B.[1,2]
    C.[1,3] D.[1,4]

    相关试卷

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理75:

    这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题二 培优点5 极化恒等式、奔驰定理与等和线定理75,共3页。

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练436:

    这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练436,共1页。

    2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练337:

    这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练337,共2页。试卷主要包含了已知抛物线C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map