- 2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第2讲 圆锥曲线的方程与性质35 试卷 0 次下载
- 2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第2讲 圆锥曲线的方程与性质53 试卷 0 次下载
- 2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第3讲 直线与圆锥曲线的位置关系52 试卷 0 次下载
- 2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第4讲 母题突破1 范围、最值问题33 试卷 0 次下载
- 2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第4讲 母题突破1 范围、最值问题51 试卷 0 次下载
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)专题六 第3讲 直线与圆锥曲线的位置关系34
展开考点一 弦长问题
核心提炼
已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),
则|AB|=eq \r(x1-x22+y1-y22)
=eq \r(1+k2)|x1-x2|
=eq \r(1+k2)eq \r(x1+x22-4x1x2),
或|AB|=eq \r(1+\f(1,k2))|y1-y2|
=eq \r(1+\f(1,k2))eq \r(y1+y22-4y1y2).
例1 已知点P在圆O:x2+y2=4上运动,过点P作x轴的垂线段PD,D为垂足,M为线段PD的中点(当点P为圆与x轴的交点时,规定点M与点P重合).
(1)求点M的轨迹方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)经过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3),0))作直线l,与圆O相交于A,B两点,与点M的轨迹相交于C,D两点,若|AB|·|CD|=eq \f(8\r(10),5),求直线l的方程.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
易错提醒 (1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等.
(2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.
(3)|AB|=x1+x2+p是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.
跟踪演练1 已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的实轴长为6,左、右焦点分别为F1,F2,点A在双曲线C上,AF2⊥x轴,且|AF1|=7.
(1)求双曲线C及其渐近线的方程;
(2)如图,若过点F1且斜率为k(k>0)的直线l与双曲线C及其两条渐近线从左至右依次交于M,P,Q,N四点,且|MN|=2|PQ|,求k.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点二 面积问题
例2 (2023·合肥模拟)已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左、右焦点分别为F1,F2,A为双曲线C的右支上一点,点A关于原点O的对称点为B,满足∠F1AF2=60°,且|BF2|=2|AF2|.
(1)求双曲线C的离心率;
(2)若双曲线C过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3),2)),过圆O:x2+y2=b2上一点T(x0,y0)作圆O的切线l,直线l交双曲线C于P,Q两点,且△OPQ的面积为2eq \r(10),求直线l的方程.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 圆锥曲线中求解三角形面积的方法
(1)常规面积公式:S=eq \f(1,2)×底×高.
(2)正弦面积公式:S=eq \f(1,2)absin C.
(3)铅锤水平面面积公式:
①过x轴上的定点:S=eq \f(1,2)a|y1-y2|(a为x轴上定长);
②过y轴上的定点:S=eq \f(1,2)a|x1-x2|(a为y轴上定长).
跟踪演练2 已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的一个焦点为Feq \b\lc\(\rc\)(\a\vs4\al\c1(-\r(3),0)),且离心率为eq \f(\r(3),3).
(1)求椭圆C的方程;
(2)若过椭圆C的左焦点,倾斜角为60°的直线与椭圆交于A,B两点,O为坐标原点,求△AOB的面积.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
考点三 中点弦问题
核心提炼
已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB的斜率为k.
若E的方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),
则k=-eq \f(b2,a2)·eq \f(x0,y0);
若E的方程为eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0),
则k=eq \f(b2,a2)·eq \f(x0,y0);
若E的方程为y2=2px(p>0),则k=eq \f(p,y0).
例3 (2023·呼和浩特模拟)已知抛物线T:y2=2px(p>0)和椭圆C:eq \f(x2,4)+eq \f(y2,2)=1,过抛物线T的焦点F的直线l交抛物线于A,B两点,线段AB的中垂线交椭圆C于M,N两点.
(1)若F恰是椭圆C的焦点,求p的值;
(2)若p∈N*,且MN恰好被AB平分,求△OAB的面积.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 处理中点弦问题常用的求解方法
跟踪演练3 (2023·萍乡模拟)已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的右焦点为F(eq \r(6),0),且C的一条渐近线经过点D(eq \r(2),1).
(1)求C的标准方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)是否存在过点P(2,1)的直线l与C交于不同的A,B两点,且线段AB的中点为P.若存在,求出直线l的方程;若不存在,请说明理由.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练436: 这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练436,共1页。
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练337: 这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练337,共2页。试卷主要包含了已知抛物线C等内容,欢迎下载使用。
2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练238: 这是一份2024学生版大二轮数学新高考提高版(京津琼鲁辽粤冀鄂湘渝闽苏浙黑吉晋皖云豫新甘贵赣桂)压轴题突破练238,共2页。试卷主要包含了已知双曲线C等内容,欢迎下载使用。