黄金卷07-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用)
展开(考试时间:120分钟 试卷满分:150分)
第I卷(选择题)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知全集,集合,则( )
A.B.C.D.
【答案】A
【解析】由题得或,所以,故选A
2.欧拉公式(e为自然对数的底数,为虚数单位)由瑞士数学家Euler(欧拉)首先发现.它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,被称为“数学中的天桥”,则( )
A. -1B.1C.-D.
【答案】A
【解析】由题意得:,故选A
3.若为奇函数,则的值为( )
A.-1B.0C.1D.-1或1
【答案】A
【解析】由题得: ,故.故选A.
4.已知向量满足,且,则在上的投影向量为( )
A.B.C.D.
【答案】C
【解析】因为向量,且,那么,
所以向量在向量上的投影向量为,
故选:C.
5.已知动点在直线上,过点作圆的一条切线,切点为,则的最小值为( )
A.1B.C.D.2
【答案】C
【解析】由题可知圆的圆心为,半径为,
设,则,有,
得,
当时,.
故选:C.
6.“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则( )
A.B.C.D.
【答案】D
【分析】根据古典概型概率公式求出,然后利用条件概率公式即得.
【详解】由题可得,,
所以.故选D.
7.玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,年出土于浙江省余杭市反山文化遗址.玉琮王通高,孔径、外径.琮体四面各琢刻一完整的兽面神人图像.兽面的两侧各浅浮雕鸟纹.器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.试估计该神人纹玉琮王的体积约为(单位:)( )
A.B.C.D.
【答案】D
【解析】由题可知,该神人纹玉琮王可看做是一个底面边长为,高为的正四棱柱中挖去一个底面直径为,高为的圆柱,此时求得体积记为,
cm3,
记该神人纹玉琮王的实际体积为,则,
且由题意可知, cm3,
故,故选D.
8.如图,已知抛物线()的焦点为,点()是抛物线上一点.以为圆心的圆与线段相交于点,与过焦点且垂直于对称轴的直线交于点,,,直线与抛物线的另一交点为,若,则( )
A.B.C.D.
【答案】B
【解析】由题意得,直线方程为:,到直线距离为,
以为圆心的圆与线段相交于点,与过焦点且垂直于对称轴的直线交于点,,,
,
,
,
解得,
,又,故,
抛物线方程为,,,,
直线方程为,
与抛物线方程联立得,
消去整理得,,解得或,
,,
,故选B.
二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
9.图是《2018年全国教育事业发展统计公报》中年我国高中阶段在校生数条形图和毛入学率的折线图,根据下图可知在年( )
A.年我国高中阶段的在校生数和毛入学率比建国初期大幅度提高
B.从年开始,我国高中阶段的在校生数和毛入学率在逐年增高
C.年我国高中阶段在校生数和毛入学率均达到了最高峰
D.年高中阶段在校生数比年下降了约,而毛入学率提高了个百分点
【答案】AD
【解析】观察条形图和折线图可知,
年我国高中阶段的在校生数和毛入学率比建国初期大幅度提高,
故A正确;
2016年和2018年的高中阶段在校生数都低于前一年,
故B错误;
年我国高中阶段在校生数达到了最高峰,但是毛入学率均低于后续几年,
故C错误;
年高中阶段在校生数为3935万人,2017年高中阶段在校生数为3971万人,年高中阶段在校生数比2017年下降了约,
年高中阶段毛入学率为万人,2017年高中阶段在校生数为万人,毛入学率提高了个百分点,故D正确.
10.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M,则下列说法正确的是( )
A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级
B.八级地震释放的能量约为七级地震释放的能量的6.3倍
C.八级地震释放的能量约为六级地震释放的能量的1000倍
D.记地震里氏震级为n(n=1,2,···,9,10),地震释放的能量为an,则数列{an}是等比数列
【答案】ACD
【解析】对于A:当时,由题意得,
解得,即地震里氏震级约为七级,故A正确;
对于B:八级地震即时,,解得,
所以,
所以八级地震释放的能量约为七级地震释放的能量的倍,故B错误;
对于C:六级地震即时,,解得,
所以,
即八级地震释放的能量约为六级地震释放的能量的1000倍,故C正确;
对于D:由题意得(n=1,2,···,9,10),
所以,所以
所以,即数列{an}是等比数列,故D正确;
故选:ACD
11.已知双曲线的左、右焦点分别为,,点P在双曲线的右支上,现有四个条件:①;②;③PO平分;④点P关于原点对称的点为Q,且,能使双曲线C的离心率为的条件组合可以是( )
A.①②B.①③C.②③D.②④
【答案】AD
【解析】③PO平分且PO为中线,可得,点P在双曲线的右支上,所以不成立;
若选①②:,,可得,,
所以,即离心率为,成立;
若选②④:,点P关于原点对称的点为Q,且,可得四边形为矩形,即,可得,,
所以,即离心率为,成立;
故选:AD
12.如图,是底面直径为高为的圆柱的轴截面,四边形绕逆时针旋转到,则( )
A.圆柱的侧面积为
B.当时,
C.当时,异面直线与所成的角为
D.面积的最大值为
【答案】BC
【解析】对于A,圆柱的侧面积为,A错误;
对于B,因为,所以,又,
所以平面,所以,B正确;
对于C,因为,所以就是异面直线与
所成的角,因为,所以为正三角形,
所以,因为,所以,C正确;
对于D,作,垂足为,连接,所以平面,所以.
在中,,
,所以,D错误.
故选:BC.
第II卷(非选择题)
三、填空题:本题共4小题,每小题5分,共20分。
13.编号为1,2,3,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为 .
【答案】6
【解析】由题意4人中选2人出来,他们的两编号一致,剩下2人编号不一致,只有一种坐法,方法数为.
14.已知,则 .
【答案】
【解析】由,得
,
,
所以,
所以,
15.已知 a>0,若,且,则a= .
【答案】2
【解析】因为,
又,展开式通项为,
对应的系数,故得到,解得,
其系数为或.
又a>0,故实数a的值为2.
16.已知函数是偶函数,将的图象沿轴向左平移个单位,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),所得图象对应的函数为.已知的图象相邻对称中心之间的距离为,则 ,若的图象在其某对称轴处对应的函数值为,则在上的最大值为 .
【答案】
【解析】函数是偶函数,
,,
又,
,
,
将的图象沿轴向左平移个单位,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),所得图象对应的函数为,
,
的图象相邻对称中心之间的距离为,
,解得,
的图象在其某对称轴处对应的函数值为,
,
,
当时,,,
故,
在上的最大值为.
四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程及验算步骤。
17.(本题满分10分)在①;②;③是与的等比中项,三个条件中任选一个,补充在下面问题中,并给出解答.
问题:已知为公差不为零的等差数列,其前项和为为等比数列,其前项和为常数,,
(1)求数列的通项公式;
(2)令其中表示不超过的最大整数,求的值.
注:如果选择多个条件分别解答,按第一个解答计分.
【解析】若选:由已知,所以
通项,
故
不妨设的公差为.则
解得所以
由,则,
,
所以.
若选:由已知,,
通项
故.
不妨设的公差为,则,
解得所以.
由,则,
,
所以.
若选:由已知,所以
通项,
故
不妨设的公差为.则,
因为解得所以.
由
则
,
所以.
18.(本题满分12分)如图,平面四边形,点,,均在半径为的圆上,且.
(1)求的长度;
(2)若,求的面积.
【解析】(1)由题意可知,的外接圆半径为,
由正弦定理,解得;
(2)在中,设,为锐角,则,
因为,
所以,
所以,
因为,
即,
所以,
则,
所以,
19.(本题满分12分)2021年春晚首次采用“云”传播,“云”互动形式,实现隔空连线心意相通,全球华人心连心“云团圆”,共享新春氛围,“云课堂”亦是一种真正完全突破时空限制的全方位互动性学习模式.某市随机抽取200人对“云课堂”倡议的了解情况进行了问卷调查,记表示了解,表示不了解,统计结果如下表所示:
(表一)
(表二)
(1)请根据所提供的数据,完成上面的列联表(表二),并判断是否有99%的把握认为对“云课堂”倡议的了解情况与性别有关系;
(2)用样本估计总体,将频率视为概率,在男性市民和女性市民中各随机抽取4人,记“4名男性中恰有3人了解云课堂倡议”的概率为,“4名女性中恰有3人了解云课堂倡议”的概率为.试求出与,并比较与的大小.
附:临界值参考表的参考公式
,其中)
【解析】(1)
.
对照临界值表知,有99%的把握认为对“云课堂”倡议了解情况与性别有关系.
(2)用样本估计总体,将频率视为概率,根据列联表得出,
男性了解“云课堂”倡议的概率为,
女性了解“云课堂”倡议的概率为:,
故,,
显然.
20.(本题满分12分)如图,四棱锥中,平面,,,,点在线段上,且,平面.
(1)求证:平面平面;
(2)若,求平面和平面所成锐二面角的余弦值.
【解析】(1)如图,连接交于点,连接,
∵平面,平面,平面平面,
∴,
由,知,又,即,
在中,,由余弦定理:,得,即,故,则,
∵平面,平面,
∴,又,
∴平面,又平面,
∴平面平面.
(2)由(1)知,,,如图建立空间直角坐标系,
由题意,有,
∴,,,,
设平面的法向量为,则,即,令,得,,则,
设平面的法向量为,则,即,令,得,,则,
设平面和平面所成二面角的大小为,则,
∴由平面和平面所成锐二面角,故其余弦值为.
21.(本题满分12分)已知分别是椭圆的左、右焦点, 为椭圆的上顶点,是面积为的直角三角形.
(1)求椭圆的方程;
(2)设圆上任意一点处的切线交椭圆于点,问:是否为定值?若是,求出此定值;若不是,说明理由.
【解析】(1)由为直角三角形,故,
又,
可得
解得
所以,
所以椭圆的方程为;
(2)当切线的斜率不存在时,其方程为
将代入,得,不妨设,,又
所以
同理当时,也有.
当切线的斜率存在时,设方程为,
因为与圆相切,
所以
即,
将代入,
得,
所以
又
,
又
,
将代入上式,得,
综上,.
22.(本题满分12分)已知函数,.
(1)若,讨论的单调性;
(2)若当时,恒成立,求的取值范围.
【解析】(1)解:的定义域为,当时,,
,
设,则,
令,解得,
当时,,单调递减,
当,,单调递增.
所以,,则对任意的恒成立,
所以,函数的单调递增区间为,无递减区间.
(2)解:当时,恒成立等价于在上恒成立,
设,
则,
设,
则图象为开口向上,对称轴为的抛物线的一部分,
当时,,在单调递增,且,
所以,,即,则函数在上单调递增,
又因为,所以在恒成立,满足题意;
当时,,,
所以方程有两相异实根,设为、,且,则,
当时,,,在上单调递减,
又因为,故当时,,
所以,在上不恒成立,不满足题意.
综上,的取值范围为.
了解情况
人数
140
60
男
女
合计
80
40
合计
男
女
合计
80
60
140
20
40
60
合计
100
100
200
黄金卷05-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用): 这是一份黄金卷05-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用),文件包含黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用解析版docx、黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用参考答案docx、黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用考试版docx等3份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
黄金卷02-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用): 这是一份黄金卷02-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅰ卷专用),文件包含黄金卷02-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用解析版docx、黄金卷02-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用参考答案docx、黄金卷02-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅰ卷专用考试版docx等3份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
黄金卷01-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅱ卷专用): 这是一份黄金卷01-【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新高考Ⅱ卷专用),文件包含黄金卷01-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅱ卷专用解析版docx、黄金卷01-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅱ卷专用参考答案docx、黄金卷01-赢在高考·黄金8卷备战2024年高考数学模拟卷新高考Ⅱ卷专用考试版docx等3份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。