数学八年级下册19.3 矩形 菱形 正方形教案
展开课题名称
四边形中考复习(1)
教学重点
理解和掌握几种常见特殊四边形的性质、判定.
教学难点
发展合情推理和初步的演绎推理能力及实际问题的应用
教 学 及 辅 导 过 程
知识结构图
【教学过程】
一 归纳整理,形成体系
1、性质判定,列表归纳
平行四边形
矩形
菱形
正方形
性
质
边
对边平行且相等
对边平行且相等
对边平行,四边相等
对边平行,四边相等
角
对角相等
四个角都是直角
对角相等
四个角都是直角
对角线
互相平分
互相平分且相等
互相垂直平分,且每条对角线平分一组对角
互相垂直平分且相等,每条对角线平分一组对角
判定
1、两组对边分别平行;
2、两组对边分别相等;
3、一组对边平行且相等;
4、两组对角分别相等;
5、两条对角线互相平分.
1、有三个角是直角的四边形;
2、有一个角是直角的平行四边形;
3、对角线相等的平行四边形.
1、四边相等的四边形;
2、对角线互相垂直的平行四边形;
3、有一组邻边相等的平行四边形。
4、每条对角线平分一组对角的四边形。
1、有一个角是直角的菱形;
2、对角线相等的菱形;
3、有一组邻边相等的矩形;
4、对角线互相垂直的矩形;
对称性
只是中心对称图形
既是轴对称图形,又是中心对称图形
面积
S= ah
S=ab
S=
S= a2
二、分类学习,优化思维
【重点精析】
1.四边形的内角和外角和都是360°,这两个定理点四边形的角度计算和四边形的推理证明的基础.
2.任意多边形问题,常设法应用三角形的知识去解决.
.
【重点精析】
1.平行四边形是一类特殊的四边形,它包括了矩形、菱形、正方形.平行四边形是中心对称图形(以后再学).
2.平行四边形主要性质:对边相等,对角相等,对边平行,对角线互相平分.
3.平行四边形性质是证明或计算的基础.如,应用边的性质(对边平行、对边相等),可以求解(证)边长、周长、对角线长以及平行等问题;应用角的性质(对角相等、邻角互补),可以求解(证)角的问题;应用对角线性质(对角线互相平分),可证明两个三角形全等,再通过三角形全等研究角或线段之间的关系.
4.由平行四边形的性质可以得出一些角与线段的相等关系,特别地,还可以知道平行线间的距离处处相等.
5.平行四边形判定的题目,应根据不同条件,灵活选用,证明中不论选用什么方法,都离不开线段的平行、相等,直角的相等关系.
【课堂演练】
演练题:
.
【课堂演练】
三拓展与延伸
〖例题1〗
四、课堂小结,领悟思想方法
1.一题多变,举一反三。
经常在解题之后进行反思——改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。也只有这样,才能做到举一反三,提高应变能力。
2.一题多解,触类旁通。
在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率,而且还能开阔你的思维,达到触类旁通的目的。
3.善于总结,领悟方法。
数学题目本身蕴含着许多数学思想方法,只要你善于总结,就能真正掌握、提炼出其中的数学方法,才能不断提高自己分析问题、解决问题的能力。
初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学设计: 这是一份初中数学沪科版八年级下册<a href="/sx/tb_c70402_t8/?tag_id=27" target="_blank">19.3 矩形 菱形 正方形教学设计</a>,共3页。教案主要包含了学习目标等内容,欢迎下载使用。
初中数学沪科版八年级下册19.3 矩形 菱形 正方形教案设计: 这是一份初中数学沪科版八年级下册<a href="/sx/tb_c70402_t8/?tag_id=27" target="_blank">19.3 矩形 菱形 正方形教案设计</a>,共4页。教案主要包含了课时目标,考纲要求,知识梳理,考点例析,反馈练习等内容,欢迎下载使用。
沪科版19.3 矩形 菱形 正方形教学设计及反思: 这是一份沪科版19.3 矩形 菱形 正方形教学设计及反思,共3页。教案主要包含了学习目标,学习重点,学习难点,自主探究等内容,欢迎下载使用。