北师大版七年级上册2.9 有理数的乘方第1课时教案
展开第1课时 有理数的乘方及其运算
教学目标
1.使学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义.
2.让学生能正确进行有理数的乘方运算.
教学重难点
重点:有理数乘方的运算.
难点:几种有理数乘方的区分.
教学过程
导入新课
古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说: “就在这个棋盘上放一些米粒吧.第 1 格放 1 粒米,第 2 格放 2 粒米,第 3 格放 4 粒米,然后是 8 粒、16 粒、32 粒……一直到第 64 格.”“你真傻!就要这么一点米粒?!”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”
你认为国王的国库里有这么多米吗?
探究新知
(一)有理数乘方的含义
探究1:某种细胞每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?(学生分组探究,教师指导)
1个细胞30分钟后分裂成2个,1小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成
=1 024(个).
为了简便,可将记作210.
一般地,n个相同的因数a相乘,记作an,即=an.
结论:这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.
探究2: 32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢? 与呢?
(教师引导学生纵向观察不同的形式和计算结果,让学生自己体会, (-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别.
让学生自己体会到写分数的乘方时要加括号,不然就是另一种运算了)
答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;
23的底数是2,指数是3,读作2的3次幂,表示2×2×2,结果是8.
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;
-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的4次幂,表示(-2)×(-2)×(-2)×(-2),结果是16;
-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.
(-2)4与-24的意义不同,其结果也不同.
的底数是,指数是2,读作的2次幂,表示×,结果是;
表示32与5的商,即,结果是.
与的意义不同,其结果也不同.
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.
(二)有理数乘方的运算
例 计算:
(1)(-4)3; (2)(-2)4; (3);
(4)33; (5)24; (6).
解:(1)(-4)3=(-4)×(-4)×(-4)=-64;
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3)=××××=;
(4)33=3×3×3=27;
(5)24=2×2×2×2=16;
(6)=×=
课堂练习
1.计算(-3)2的结果为( )
A.-9 B.9 C.-6 D. 6
2.计算-42的结果为( )
A.-16 B.16 C.-8 D. 8
3.填空:
(1)(-5)3= ; (2)0.13= ;
(3)(-1)9= ; (4)(-1)12= ;
(5)(-1) 2n= ; = ;
(7)(-1) n= .
4.如果|x-3|+(y+2)2=0,求yx的值.
参考答案
1.B
2.A
3.(1)-125; (2)0.001; (3)-1; (4)1; (5)1; (6)-1;
(7)
4.解:∵ |x-3|≥0,(y+2)2≥0,
且|x-3|+(y+2)2=0,
∴|x-3|=0,(y+2)2=0,
∴ x=3,y=-2,
∴ yx=(-2)3=-8.
课堂小结
1.有理数的乘方的意义和相关概念;
幂的底数是分数或负数时,底数应该添上括号.
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂是正数;
(2)正数的任何次幂都是正数;
(3)0的任何正整数次幂都是0.
3.乘方的有关运算
进行乘方运算应先确定符号后再计算.
布置作业
完成教材习题2.13.
板书设计
第二章 有理数及其运算
9 有理数的乘方
第1课时 有理数的乘方及其运算
(一)有理数乘方的含义
求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.
(二)有理数乘方的运算
例 计算:
(1)(-4)3; (2)(-2)4; (3);
(4)33; (5)24; (6).
教学反思
教学反思
教学反思
教学反思
初中数学北师大版七年级上册第二章 有理数及其运算2.9 有理数的乘方第2课时教学设计: 这是一份初中数学北师大版七年级上册<a href="/sx/tb_c9917_t8/?tag_id=27" target="_blank">第二章 有理数及其运算2.9 有理数的乘方第2课时教学设计</a>,共4页。
数学七年级上册第二章 有理数及其运算2.9 有理数的乘方精品教案: 这是一份数学七年级上册第二章 有理数及其运算2.9 有理数的乘方精品教案,共5页。教案主要包含了总结归纳等内容,欢迎下载使用。
数学北师大版2.9 有理数的乘方公开课教案: 这是一份数学北师大版2.9 有理数的乘方公开课教案,共3页。教案主要包含了教学目标,课时安排,教学重点,教学难点,教学过程,板书设计,作业布置,教学反思等内容,欢迎下载使用。