![湘教版数学八年级下册1.4.2角平分线的性质练习题01](http://www.enxinlong.com/img-preview/2/3/15376310/0-1708509671217/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湘教版数学八年级下册1.4.2角平分线的性质练习题02](http://www.enxinlong.com/img-preview/2/3/15376310/0-1708509671255/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湘教版数学八年级下册1.4.2角平分线的性质练习题03](http://www.enxinlong.com/img-preview/2/3/15376310/0-1708509671274/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学湘教版八年级下册1.4 角平分线的性质测试题
展开1. 如图,已知点P在射线BD上,PA⊥AB,PC⊥BC,垂足分别为A,C,且PA=PC,下列结论错误的是( )
A.AD=CP B.点D在∠ABC的平分线上
C.△ABD≌△CBD D.∠ADB=∠CDB
2. 如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中( )
A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确
3.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
4. 如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是( )
A.DE=DF B.AE=AF C.△ADE≌△ADF D.AD=DE+DF
5.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB边的距离为( )
A.18 B.16 C.14 D. 12
6. 如图, ∠AOB和一条定长线段A,在∠AOB内找一点P,使P 到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是( )
A.平行线之间的距离处处相等
B.到角的两边距离相等的点在角的平分线上
C.角的平分线上的点到角的两边的距离相等
D.到线段的两个端点距离相等的点在线段垂直平分线上
二、填空题
7. 如图,是一个风筝骨架.为使风筝平衡,须使∠AOP=∠BOP.已知PC⊥OA,PD⊥OB,那么PC和PD应满足__________,才能保证OP为∠AOB的角平分线.
8.如图,△ABC中,∠C=90°,∠A=36°,DE⊥AB于D,且EC=ED,则∠EBC的度数为__________.
9.如图,已知BD是∠ABC的内角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是 。
10.通过学习我们已经知道三角形的三条内角平分线是交于一点.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为__________.
三、解答题
11.已知:在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,求证:BD+DE=AC.
12. 如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.
13.如图所示,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.
14.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.
15.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
(1)若连接AM,则AM是否平分∠DAB?请你证明你的结论;
(2)线段DM与AM有怎样的位置关系?请说明理由.
答案:
1.A
2. B
3.D
分析:根据角平分线上的点到角的两边的距离相等作出图形即可得解.
解:如图所示,货物中转站的地址有四处.
故选D.
4. D
5. C
分析:做DE垂直于AB,求证ΔACD全等ΔAED(AAS),CD等于DE,用比例设X,求出CD,BD长,DE就是距离。
解:如图,过D作DE⊥AB于E,
∵AD平分∠BAC交BC于D,而∠C=90°,
∴CD=DE,
∵BC=64,且BD:CD=9:7,
∴CD=64×=28,∴DE=28,
则点D到AB边的距离为28.故选C.
6. B
7. PC=PD
8. 27°
9. 分析:根据角平分线性质:角平分线上的点到角的两边距离相等即可得到结果
解:根据角平分线性质:角平分线上的点到角的两边距离相等即可得到结果,
BD是∠ABC的内角平分线,DE⊥BC、DG⊥AB,
CD是∠ACB的外角平分线,DE⊥BC、DF⊥AC,
10. 5
11. 证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,
∴CD=DE.
∴BC=BD+CD=BD+DE.
∵AC=BC,
∴AC=BD+DE.
12. 证明:∵BE⊥AC,CF⊥AB,
∴∠BFD=∠CED=90°.
在△BDF与△CDE中,∠BFD=∠CED,∠BDF=∠CDE,BD=CD,
∴△BDF≌△CDE(AAS).
∴DF=DE.
∴AD是∠BAC的平分线.
13.证明:证一(截长法):如图1所示,过点D作BD⊥AB于E,
∵AD是∠BAC的平分线
∴∠CAD=∠EAD,又∠DEA=∠DCA且AD公共,∴△ADE≌△ACD(AAS),∴ AE=AC,CD=DE
在△DEB中,∵∠B=45°,∠DEB=90°,
∴△EBD是等腰直角三角形.∴DE=EB,∴CD=EB.
∴AC+CD=AE+EB,即AC+CD=AB.
证法二(补短法):
如图2所示,在AC的延长线上截取CM=CD,连结DM.
A
B
C
M
D
图2
在△MCD中,∠MCD=90°,CD=CM
∴△MCD是等腰直角三角形.∴∠M=45°
又∵在等腰直角三角形中,∠B=45°
∴∠M=∠B=45° 又∵AD平分∠CAD
∴在△MAD与△BAD中
∴△MAD≌△BAD(AAS)∴MA=AB,即AC+CD=AB.
14.相等.
证明:连接EB,EC.
∵AE是∠BAC的平分线,EF⊥AB,EG⊥AC,
∴EF=EG.
∵ED⊥BC于D,D是BC的中点,
∴EB=EC.
∴Rt△EFB≌Rt△EGC(HL).
∴BF=CG.
15. (1)AM平分∠DAB.
证明:过点M作ME⊥AD,垂足为E.
∵DM平分∠ADC,∴∠1=∠2.
∵MC⊥CD,ME⊥AD,∴ME=MC.
又∵MC=MB,∴ME=MB.
∵MB⊥AB,ME⊥AD,
∴AM平分∠DAB.
(2)AM⊥DM.
理由:∵∠B=∠C=90°,
∴DC⊥CB,AB⊥CB.
∴CD∥AB.
∴∠CDA+∠DAB=180°.
又∵∠1=∠CDA,∠3=∠DAB,
∴2∠1+2∠3=180°.
∴∠1+∠3=90°.
∴∠AMD=90°,即AM⊥DM.
数学八年级下册1.4 角平分线的性质课后作业题: 这是一份数学八年级下册<a href="/sx/tb_c95339_t7/?tag_id=28" target="_blank">1.4 角平分线的性质课后作业题</a>,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中湘教版1.4 角平分线的性质巩固练习: 这是一份初中湘教版1.4 角平分线的性质巩固练习,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学湘教版八年级下册1.4 角平分线的性质第1课时同步训练题: 这是一份初中数学湘教版八年级下册1.4 角平分线的性质第1课时同步训练题,共6页。