湘教版八年级下册2.2.1平行四边形的性质第一课时同步训练题
展开1. 已知□ABCD中,∠A+∠C=200°,则∠B的度数是( )
A.100° B.160° C.80° D.60°
2.如图,□ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )
A.16° B.22° C.32° D.68°
3.如图,点E是□ABCD的边CD的中点,AD、BE的延长线相交于点F,DF=3,DE=2,则□ABCD的周长是( )
A.5 B.7 C.10 D.14
4. 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )
A.6 B.8 C.10 D.12
5. 在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是( )
A、22 B、20 C、22或20 D、18
6. 如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,下列结论不一定成立的是( )
A.AB=CD B.CE=FG C.EG=CF D.BD=EG
7.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC长为( )
A.9 B.10 C.11 D.12
二、填空题
8. 如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为 .
9. 平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为 .
10. 等腰三角形ABC的一腰AB=4cm,过底边BC上的任一点D作两腰的平行线,分别交两腰与E、F,则平行四边形AEDF的周长是 .
11. 如图在平行四边形ABCD中,点E在CD边上运动(不与C、D两点重合),连接AE并延长与BC的延长线交于点F.连接BE、DF,若△BCE的面积是8,则△DEF的面积是 _________.
三、解答题
12. 如图,在□ABCD中,∠A+∠C =160°,求∠A、∠B、∠C、∠D的度数.
13. 如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长
14.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的平分线,求证:
(1)△ABE≌△AFE;
(2)∠FAD=∠CDE.
15. 如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;
(2)求证:AF=CD+CF
答案:
1.C
2.C
3.D
4.B
5. C
6. D
7. C
8. 10
9. 根据平行四边形的性质:对角相等,邻角互补来解答.一组对角的度数之和为200°,则该组对角均为100°.又因为平行四边形邻角互补,所以,另一组对角均为180°-100°= 80°.所以较大的角为100°.
10. 8cm
【解答】在□AEDF中,DE∥AF,∠BDE=∠C,∵AB=AC,∴∠B=∠C,∴∠B=∠BDE,∴BE=DE,同理FD=FC,∴AE+ED+DF+AF=AB+AC=8cm.
11. 8
解答:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴△ADE∽△FCE,
∴AE:EF=DE:CE,
∵S△BCE:S△ADE=CE:DE,S△DEF:S△ADE=EF:AE,
∴S△DEF=S△BCE=8.
故答案为:8.
12. 答案:∠A=∠C=80°,∠D=∠B=100°.
【解答】在ABCD中,∠A=∠C,∠B=∠D.
又∵∠A+∠C =160°,∴∠A=∠C=80°.
∵在ABCD中,AD∥BC,∴∠D=∠B=100°.
∵ABCD是平行四边形,
∴∠A=∠C再由∠A+∠C =160°,
可得∠A=∠C=80°,再利用邻角互补求∠B,∠D.
13. 解答:∵四边形ABCD为平行四边形,
∴AB=DC=6,AD=BC=10,AB∥DC.
∵AB∥DC,
∴∠1=∠3,
又∵BF平分∠ABC,
∴∠1=∠2,
∴∠2=∠3,
∴BC=CF=10,
∴DF=BF-DC=10-6=4.
15. (1)解:∵∠D=105°,∠DAF=35°,
∴∠DFA=180°-∠D-∠DAF=40°(三角形内角和定理).
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD(平行四边形对边平行且相等).
∴∠DFA=∠FAB=40°(两直线平行,内错角相等);
∵∠DFA=2∠BAE(已知),
∴∠FAB=2∠BAE(等量代换).
即∠FAE+∠BAE=2∠BAE.
∴∠FAE=∠BAE;
∴2∠FAE=40°,
∴∠FAE=20°;
(2)证明:在AF上截取AG=AB,连接EG,CG.
∵∠FAE=∠BAE,AE=AE,
∴△AEG≌△AEB.
∴EG=BE,∠B=∠AGE;
又∵E为BC中点,∴CE=BE.
∴EG=EC,∴∠EGC=∠ECG;
∵AB∥CD,∴∠B+∠BCD=180°.
又∵∠AGE+∠EGF=180°,∠AGE=∠B,
∴∠BCF=∠EGF;
又∵∠EGC=∠ECG,
∴∠FGC=∠FCG,∴FG=FC;
又∵AG=AB,AB=CD,
∴AF=AG+GF=AB+FC=CD+FC.
初中数学湘教版八年级下册2.2.1平行四边形的性质第二课时课时训练: 这是一份初中数学湘教版八年级下册<a href="/sx/tb_c95350_t7/?tag_id=28" target="_blank">2.2.1平行四边形的性质第二课时课时训练</a>,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学八年级下册2.2.1平行四边形的性质练习: 这是一份数学八年级下册2.2.1平行四边形的性质练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学八年级下册2.2.1平行四边形的性质巩固练习: 这是一份数学八年级下册2.2.1平行四边形的性质巩固练习,共12页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。