- 专题36 圆中的重要模型之辅助线模型(八大类)-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用) 试卷 0 次下载
- 专题35 圆中的重要模型之定角定高模型、米勒最大角模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用) 试卷 1 次下载
- 专题38 重要的几何模型之中点模型(一)-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用) 试卷 0 次下载
- 专题39 重要的几何模型之中点模型(二)-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用) 试卷 0 次下载
- 专题40 重要的几何模型之模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用) 试卷 0 次下载
专题37 图形变换模型之翻折(折叠)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用)
展开涉及翻折问题,以矩形对称最常见,变化形式多样。无论如何变化,解题工具无非全等、相似、勾股以及三角函数,从条件出发,找到每种对称下隐藏的结论,往往是解题关键。本专题以各类几个图形(三角形、平行四边形、菱形、矩形、正方形、圆等)为背景进行梳理及对应试题分析,方便掌握。
【知识储备】
翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。以这个性质为基础,结合三角形、四边形、圆的性质,三角形相似,勾股定理设方程思想来考查。
解决翻折题型的策略:
1)利用翻折的性质:①翻折前后两个图形全等;②对应点连线被对称轴垂直平分;
2)结合相关图形的性质(三角形,四边形等);3)运用勾股定理或者三角形相似建立方程。
模型1.矩形中的翻折模型
【模型解读】
例1.(2023·辽宁鞍山·统考中考真题)如图,在平面直角坐标系中,矩形的边,分别在轴、轴正半轴上,点在边上,将矩形沿折叠,点恰好落在边上的点处.若,,则点的坐标是 .
例2.(2023春·江苏泰州·八年级统考期中)如图,在矩形中,,,E是的中点,将沿直线翻折,点落B在点F处,连结,则的长为( )
A.6B.C.D.
例3.(2023·湖北·统考中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.(1)求证:;(2)若,求的长.
例4.(2023春·江苏宿迁·八年级统考期末)如图,在矩形中,,.点O为矩形的对称中心,点E为边上的动点,连接并延长交于点F.将四边形沿着翻折,得到四边形,边交边于点G,连接,则的面积的最小值为( )
A.18-3B.C.D.
例5.(2023春·辽宁抚顺·八年级校联考期中)如图,矩形纸片中,,,点E、G分别在上,将、分别沿翻折,翻折后点C与点F重合,点B与点P重合.当A、P、F、E四点在同一直线上时,线段长为( )
A.B.C.D.
例6.(2023·江苏盐城·统考中考真题)综合与实践
【问题情境】如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.
【活动猜想】(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答:_________.
【问题解决】(2)如图3,当,,时,求证:点,,在同一条直线上.
【深入探究】(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.
(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.
模型2.正方形中的翻折模型
【模型解读】
例1.(2023·河南洛阳·统考二模)如图,正方形的边长为4,点F为边的中点,点P是边上不与端点重合的一动点,连接.将沿翻折,点A的对应点为点E,则线段长的最小值为( )
A.B.C.D.
例2.(2023·广西玉林·统考模拟预测)如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是( )
A.1B.3C.6D.
例3.(2023·广东九年级课时练习)如图,正方形中,,点E在边上,且.将沿对折至,延长交边于点G,连接,则下列结论:①;②③;④AG//CF;其中正确的有 (填序号).
例4.(2023·江苏扬州·统考中考真题)如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为 .
例5.(2023·江苏·统考中考真题)综合与实践 定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.(1)概念理解:当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.
(2)操作验证:用正方形纸片进行如下操作(如图(2)):
第一步:对折正方形纸片,展开,折痕为,连接;
第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.
试说明:矩形是1阶奇妙矩形.
(3)方法迁移:用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.
模型3.菱形中的翻折模型
【模型解读】
例1.(2023·四川成都·模拟预测)如图,在菱形中,,将菱形折叠,使点恰好落在对角线上的点处不与、重合,折痕为,若,,则的长为 .
例2.(2023·安徽·统考一模)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A’MN,连结A’C,则A’C长度的最小值是( ).
A.B.C.D.2
例3.(2023·山东枣庄·九年级校考阶段练习)如图,在菱形纸片中,,,将菱形纸片翻折,使点A落在的中点处,折痕为,点,分别在边,上,则的长为( )
A.B.C.D.
例4.(2023春·湖北十堰·八年级校联考期中)如图,在菱形纸片中,,E是边的中点,将菱形纸片沿过点A的直线折叠,使点B落在直线上的点G处,折痕为,与交于点H,有如下结论:①;②;③;④,上述结论中,所有正确结论的序号是( )
A.①②④B.①②③C.①③④D.①②③④
例5.(2023·浙江·九年级期末)对角线长分别为6和8的菱形如图所示,点O为对角线的交点,过点O折叠菱形,使B,两点重合,是折痕.若,则的长为 .
例6.(2023秋·重庆·九年级专题练习)如图,在菱形中,,,点是的中点,点是上一点,以为对称轴将折叠得到,以为对称轴将折叠得到,使得点落到上,连接.下列结论错误的是( )
A.B.C.D.
模型4.三角形中的翻折模型
【模型解读】
例1.(2023·内江九年级期中)如图,在RtABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD为折痕将ADB折叠得到,与边BC交于点E.若为直角三角形,则BD的长是_____.
例2.(2023年四川省成都市数学中考真题)如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则 .
例3.(2023·湖北襄阳·统考中考真题)如图,在中,,点是的中点,将沿折叠得到,连接.若于点,,则的长为 .
例4.(2023·湖北武汉·统考中考真题)如图,平分等边的面积,折叠得到分别与相交于两点.若,用含的式子表示的长是 .
模型5.圆中的翻折模型(弧翻折必出等腰)
如图,以圆O的一条弦BC为对称轴将弧BC折叠后与弦AB交于点D,则CD=CA
特别的,若将弧BC折叠后过圆心,则CD=CA,∠CAB=60°
例1.(2022秋·浙江宁波·九年级校考期末)如图,是的外接圆,,把弧沿弦向下折叠交于点D,若点D为中点,则长为( )
A.1B.2C.D.
例2.(2023·广东广州·统考一模)如图,为的直径,点为圆上一点,,将劣弧沿弦所在的直线翻折,交于点,则的度数等于( ).
A.B.C.D.
例3.(2023·浙江宁波·校考一模)如图,的半径为4.将的一部分沿着弦AB翻折,劣弧恰好经过圆心O.则这条劣弧的弧长为 .
例4.(2022春·湖北荆州·九年级专题练习)如图,为的直径,将沿翻折,翻折后的弧交于D.若,,则图中阴影部分的面积为( )
A.B.C.8D.10
例5.(2023·河南商丘·统考二模)如图,在扇形中,,点C,D分别是和上的点,且,将扇形沿翻折,翻折后的恰好经过点O.若,则图中阴影部分的面积是 .
例6.(2023·吉林长春·统考模拟预测)如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是( )
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
例7.(2021·湖北武汉·统考中考真题)如图,是的直径,是的弦,先将沿翻折交于点.再将沿翻折交于点.若,设,则所在的范围是( )
A. B. C. D.
例8.(2022·江苏扬州·统考一模)如图,将⊙O沿弦AB折叠,使折叠后的弧恰好经过圆心O,点P是优弧上的一个动点(与A、B两点不重合),若⊙O的半径是2cm,则△APB面积的最大值是 cm2
课后专项训练
1.(2023·浙江·一模)如图,在矩形中,,点E为的中点,点F在上,连接,将沿翻折,使点B的对应点恰为点E,则的长为( )
A.B.C.D.
2.(2023年湖北省黄石市中考数学真题)如图,有一张矩形纸片.先对折矩形,使与重合,得到折痕,把纸片展平.再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕﹐同时得到线段,.观察所得的线段,若,则( )
A.B.C.D.
3.(2023·黑龙江·统考中考真题)如图,在平面直角坐标中,矩形的边,将矩形沿直线折叠到如图所示的位置,线段恰好经过点,点落在轴的点位置,点的坐标是( )
A.B.C.D.
4.(2023·福建莆田·九年级校考期末)如图,在中,点在优弧上,将弧沿折叠后刚好经过的中点.若的半径为5,,则的长是( )
A.B.C.D.
5.(2022·浙江宁波·统考一模)如图,是半径为4的的弦,且,将沿着弦折叠,点C是折叠后的上一动点,连接并延长交于点D,点E是的中点,连接.则的最小值为 .
6.(2023·辽宁盘锦·统考中考真题)如图,四边形是矩形,,.点E为边的中点,点F为边上一点,将四边形沿折叠,点A的对应点为点,点B的对应点为点,过点作于点H,若,则的长是 .
7.(2023·山东济南·统考中考真题)如图,将菱形纸片沿过点的直线折叠,使点落在射线上的点处,折痕交于点.若,,则的长等于 .
8.(2023·山东淄博·统考一模)如图所示,有一块直角三角形纸片,,将斜边翻折,使点B落在直角边的延长线上的点E处,折痕为,则的长是 ___________.
9.(2023秋·四川雅安·八年级统考期末)在中,,点D在边上,连接,将沿直线翻折,点A恰好落在边上的点E处,若,,则的长是 .
10.(2023·湖北宜昌·统考中考真题)如图,小宇将一张平行四边形纸片折叠,使点落在长边上的点处,并得到折痕,小宇测得长边,则四边形的周长为 .
11.(2023·新疆·统考中考真题)如图,在中,,,,点是上一动点,将沿折叠得到,当点恰好落在上时,的长为 .
12.(2023春·浙江宁波·八年级统考期末)如图,在矩形中,,,现将矩形沿折叠,点C翻折后交于点G,点D的对应点为点H,当时,线段的长为 .
13.(2023春·安徽安庆·九年级校联考阶段练习)如图,长方形沿着对角线翻折,点C落在点处,与相交于点E,若,,则的长为 .
14.(2023春·湖北武汉·八年级校考阶段练习)如图(1),在等腰直角三角形纸片中,,,点D,E分别为上的动点,将纸片沿翻折,点B的对应点恰好落在边上,如图(2),再将纸片沿翻折,点C的对应点为,如图(3).当,的重合部分(即阴影部分)为直角三角形时,的长为______.
15.(2022·浙江嘉兴·统考中考真题)如图,在扇形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F.已知,,则的度数为 ;折痕的长为 .
16.(2023·黑龙江绥化·统考中考真题)如图,的半径为,为的弦,点为上的一点,将沿弦翻折,使点与圆心重合,则阴影部分的面积为 .(结果保留与根号)
17.(2023·湖北·统考中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接.(1)求证:;(2)若,求的长.
18.(2023·宁夏·统考中考真题)综合与实践
问题背景:数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究. 探究发现:如图1,在中,,.
(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则_______,设,,那么______(用含的式子表示);
(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;
拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.
19.(2023秋·山西·九年级专题练习)综合与实践:
在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.
在矩形中,E为边上一点,F为边上一点,连接、,分别将和沿、翻折,点D、B的对应点分别为点G、H,且C、H、G三点共线.
(1)如图1,若F为边的中点,,点G与点H重合,则= °,= ;
(2)如图2,若F为的中点,平分,,,求的度数及的长;
(3),,若F为的三等分点,请直接写出的长 .
20.(2022·广西南宁·统考三模)综合实践:在数学综合实践课上,第一小组同学展示了如下的操作及问题:如图1,同学们先画出半径为的,将圆形纸片沿着弦折叠,使对折后劣弧恰好过圆心,同学们用尺子度量折痕的长约为,并且同学们用学过的知识验证度量的结果是正确的.
验证如下:如图1,过点作于点,并延长交虚线劣弧于点,∴,
由折叠知,,连接,在中,,
根据勾股定理得,,
∴,
通过计算:,同学们用尺子度量折痕的长约为是正确的.
请同学们进一步研究以下问题:
(1)如图2,的半径为,为的弦,,垂足为点,劣弧沿弦折叠后经过的中点,求弦的长(结果保留根号);(2)如图3,在中劣弧沿弦折叠后与直径相交于点,若,,求弦的长(结果保留根号).
专题40 重要的几何模型之模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题40 重要的几何模型之模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题40重要的几何模型之模型原卷版docx、专题40重要的几何模型之模型解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
专题34 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题34 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题34圆中的重要模型之阿基米德折弦定理模型婆罗摩笈多定理模型原卷版docx、专题34圆中的重要模型之阿基米德折弦定理模型婆罗摩笈多定理模型解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
专题32 圆中的重要模型之隐圆模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题32 圆中的重要模型之隐圆模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题32圆中的重要模型之隐圆模型原卷版docx、专题32圆中的重要模型之隐圆模型解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。