|试卷下载
终身会员
搜索
    上传资料 赚现金
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      压轴小题05 一文搞定平面向量疑难问题(原卷版).docx
    • 解析
      压轴小题05 一文搞定平面向量疑难问题(解析版).docx
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)01
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)02
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)03
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)01
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)02
    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)03
    还剩8页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)

    展开
    这是一份压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用),文件包含压轴小题05一文搞定平面向量疑难问题原卷版docx、压轴小题05一文搞定平面向量疑难问题解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    1.平面向量基本定理
    如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
    其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
    (1).基底e1,e2必须是同一平面内的两个不共线向量,零向量不能作为基底.
    (2)基底给定,同一向量的分解形式唯一.
    2.平面向量的正交分解
    把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
    应用平面向量基本定理应注意的问题
    只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.
    利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加、减运算或数乘运算.
    形如条件的应用(“爪子定理”)
    “爪”字型图及性质:
    (1)已知为不共线的两个向量,则对于向量,必存在,使得。则三点共线
    当,则与位于同侧,且位于与之间
    当,则与位于两侧
    时,当,则在线段上;当,则在线段延长线上
    (2)已知在线段上,且,则
    3、中确定方法
    (1)在几何图形中通过三点共线即可考虑使用“爪”字型图完成向量的表示,进而确定
    (2)若题目中某些向量的数量积已知,则对于向量方程,可考虑两边对同一向量作数量积运算,从而得到关于的方程,再进行求解
    (3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于的方程,再进行求解
    4.平面向量系数和
    如图,为所在平面上一点,过作直线,由平面向量基本定理知:
    存在,使得
    下面根据点的位置分几种情况来考虑系数和的值
    = 1 \* GB3 \* MERGEFORMAT ①若时,则射线与无交点,由知,存在实数,使得
    而,所以,于是
    = 2 \* GB3 \* MERGEFORMAT ②若时,
    (i)如图1,当在右侧时,过作,交射线于两点,则
    ,不妨设与的相似比为
    由三点共线可知:存在使得:
    所以
    (ii)当在左侧时,射线的反向延长线与有交点,如图1作关于的对称点,由(i)的分析知:存在存在使得:
    所以
    于是
    综合上面的讨论可知:图中用线性表示时,其系数和只与两三角形的相似比有关。
    我们知道相似比可以通过对应高线、中线、角平分线、截线、外接圆半径、内切圆半径之比来刻画。因为三角形的高线相对比较容易把握,我们不妨用高线来刻画相似比,在图中,过作边的垂线,设点在上的射影为,直线交直线于点,则 (的符号由点的位置确定),因此只需求出的范围便知的范围
    5.极化恒等式
    恒等式右边有很直观的几何意义:
    向量的数量积可以表示为以这两个向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的,恒等式的作用在于向量的线性运算与数量积之间的联系
    如图在平行四边形 中,

    在上述图形中设平行四边形 对角线交于 点, 则对于三角形来说:
    极化恒等式的适用条件
    共起点或共终点的两向量的数量积问题可直接进行转化
    (2)不共起点和不共终点的数量积问题可通过向量的平移,等价转化为共起点或共终点的两向量的数量积问题
    在确定求数量积的两个向量共起点或共终点的情况下,极化恒等式的一般步骤如下
    第一步:取第三边的中点,连接向量的起点与中点;
    第二步:利用极化恒等式公式,将数量积转化为中线长与第三边长的一半的平方差;
    第三步:利用平面几何方法或用正余弦定理求中线及第三边的长度,从而求出数量积
    如需进一步求数量积范围,可以用点到直线的距离最小或用三角形两边之和大于等于第三边,两边之差小于第三边或用基本不等式等求得中线长的最值(范围)。
    6.奔驰定理
    如图,已知P为内一点,则有.
    由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.
    7.奔驰定理的证明
    如图:延长与边相交于点

    8.奔驰定理的推论及四心问题
    推论是内的一点,且,则
    有此定理可得三角形四心向量式
    (1)三角形的重心:三角形三条中线的交点叫做三角形的重心,重心到顶点的距离与重心到对边中点的距离之比为2:1.
    (2)三角形的垂心:三角形三边上的高的交点叫做三角形的垂心,垂心和顶点的连线与对边垂直.
    (3)三角形的内心:三角形三条内角平分线的交点叫做三角形的内心,也就是内切圆的圆心,三角形的内心到三边的距离相等,都等于内切圆半径r.
    (4)三角形的外心:三角形三条边的垂直平分线的交点叫做三角形的外心,也就是三角形外接圆的圆心,它到三角形三个顶点的距离相等.
    奔驰定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.
    已知点在内部,有以下四个推论:
    ①若为的重心,则;
    ②若为的外心,则;或
    ③若为的内心,则;备注:若为的内心,则也对.
    ④若为的垂心,则,或
    研究三角形“四心”的向量表示,我们就可以把与三角形“四心”有关的问题转化为向量问题,充分利用平面向量的相关知识解决三角形的问题,这在一定程度上发挥了平面向量的工具作用,也很好地体现了数形结合的数学思想.
    压轴训练
    一、单选题
    1.(2023春·江苏镇江·高三校考开学考试)已知平面向量满足,且,则的最大值为( )
    A.B.C.D.
    2.(2022·江苏镇江·扬中市第二高级中学校考模拟预测)已知 与为单位向量,且⊥,向量满足,则||的可能取值有( )
    A.6B.5C.4D.3
    3.(2023秋·江苏南京·高三南京市第一中学校考期末)已知是面积为的等边三角形,四边形是面积为2的正方形,其各顶点均位于的内部及三边上,且可在内任意旋转,则的最大值为( )
    A.B.C.D.
    4.(2023·江苏镇江·扬中市第二高级中学校考模拟预测)已知直线l1:与l2:相交于点M,线段AB是圆C:的一条动弦,且,则的最小值为( )
    A.B.C.D.
    5.(2023·江苏扬州·统考模拟预测)已知向量,满足的动点的轨迹为,经过点的直线与有且只有一个公共点,点在圆上,则的最小值为( ).
    A.B.
    C.D.1
    6.(2022·江苏盐城·江苏省滨海中学校考模拟预测)AB为⊙C:(x-2)2+(y-4)2=25的一条弦,,若点P为⊙C上一动点,则的取值范围是( )
    A.[0,100]B.[-12,48]C.[-9,64]D.[-8,72]
    7.(2022秋·江苏南通·高三统考开学考试)已知锐角满足,且O为的外接圆圆心,若,则的取值范围为( )
    A.B.C.D.
    8.(2022秋·江苏南通·高三开学考试)在中,,,过的外心O的直线(不经过点)分别交线段于,且,,则的取值范围是( )
    A.B.
    C.D.
    9.(2022秋·江苏泰州·高三姜堰中学校联考阶段练习)已知平面向量满足对任意都有成立,且,则的值为( )
    A.1B.C.2D.
    10.(2022秋·江苏盐城·高三统考期中)已知点,及圆上的两个动点C、D,且,则的最大值是( )
    A.6B.12C.24D.32
    11.(2022·江苏盐城·模拟预测)在中,内角A,B,C的对边分别是a,b,c,,,,则线段CD长度的最小值为( )
    A.2B.C.3D.
    12.(2022秋·江苏苏州·高三苏州中学校联考阶段练习)在中,,,,点在该三角形的内切圆上运动,若(,为实数),则的最小值为( )
    A.B.C.D.
    13.(2023·江苏常州·校考一模)已知、是椭圆的左、右焦点,点是椭圆上任意一点,以为直径作圆,直线与圆交于点(点不在椭圆内部),则
    A.B.4C.3D.1
    14.(2023秋·江苏·高三校联考阶段练习)在中,,,E是AB的中点,EF与AD交于点P,若,则( )
    A.B.C.D.1
    二、多选题
    15.(2023春·江苏南京·高三南京市第二十九中学校考阶段练习)已知为所在的平面内一点,则下列命题正确的是( )
    A.若为的垂心,,则
    B.若为锐角的外心,且,则
    C.若,则点的轨迹经过的重心
    D.若,则点的轨迹经过的内心
    16.(2023秋·江苏泰州·高三统考期末)过圆:内一点作两条互相垂直的弦,,得到四边形,则( )
    A.的最小值为4
    B.当时,
    C.四边形面积的最大值为16
    D.为定值
    17.(2023·江苏南通·校联考模拟预测)已知O为坐标原点,曲线在点处的切线与曲线相切于点,则( )
    A.B.
    C.的最大值为0D.当时,
    18.(2022秋·江苏苏州·高三校联考阶段练习)在△中,内角所对的边分别为a、b、c,则下列说法正确的是( )
    A.
    B.若,则
    C.
    D.若,且,则△为等边三角形
    19.(2022秋·江苏南通·高三统考阶段练习)在平面直角坐标系中,O是坐标原点,是圆上两个不同的动点,是的中点,且满足.设到直线的距离之和的最大值为,则下列说法中正确的是( )
    A.向量与向量所成角为
    B.
    C.
    D.若,则数列的前n项和为
    20.(2023秋·江苏南京·高三南京外国语学校校考阶段练习)半圆形量角器在第一象限内,且与轴、轴相切于、两点.设量角器直径,圆心为,点为坐标系内一点.下列选项正确的有( )

    A.点坐标为B.
    C.D.若最小,则
    21.(2022秋·江苏扬州·高三统考阶段练习)已知向量.则下列命题正确的是( )
    A.若,则B.存在,使得
    C.与共线的单位向量为 D.向量与夹角的余弦值范围是
    三、填空题
    22.(2023秋·江苏苏州·高三常熟中学校考期末)已知是平面向量,与是单位向量,且,若,则的最小值为 .
    23.(2022·江苏南京·统考模拟预测)平面向量,,满足,,,则 .
    24.(2022秋·江苏泰州·高三江苏省泰兴中学校考阶段练习)在中,,D为BC上一点,E为AD上一点,F为EC上一点,且,,,,则 .
    四、双空题
    25.(2023·江苏南京·南京市第五高级中学校考模拟预测)如图所示,在平面直角坐标系中,点A,B分别在x轴,y轴的正半轴上运动,已知,,,当A,B运动时,周长的最大值为 ;M为线段AB的中点,H为直线OC上一点,若,则的最大值为 .
    相关试卷

    压轴大题14 披荆斩棘搞定导数综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用): 这是一份压轴大题14 披荆斩棘搞定导数综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用),文件包含压轴大题14披荆斩棘搞定导数综合问题原卷版docx、压轴大题14披荆斩棘搞定导数综合问题解析版docx等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。

    压轴大题11 归纳总结梳理数列综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用): 这是一份压轴大题11 归纳总结梳理数列综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用),文件包含压轴大题11归纳总结梳理数列综合问题原卷版docx、压轴大题11归纳总结梳理数列综合问题解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    压轴小题10 迎刃而解平面解析几何综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用): 这是一份压轴小题10 迎刃而解平面解析几何综合问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用),文件包含压轴小题10迎刃而解平面解析几何综合问题原卷版docx、压轴小题10迎刃而解平面解析几何综合问题解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        压轴小题05 一文搞定平面向量疑难问题-【突破压轴冲刺名校】备战2024年新高考数学二轮复习满分秘籍(江苏专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map