所属成套资源:高三数学高考高分突破之概率统计专题
高三数学高考高分突破之概率统计专题07 随机事件的概率(原卷版)3
展开
这是一份高三数学高考高分突破之概率统计专题07 随机事件的概率(原卷版)3,共5页。试卷主要包含了给出下列四个命题等内容,欢迎下载使用。
①至少有1个白球与至少有1个黄球;
②至少有1个黄球与都是黄球;
③恰有1个白球与恰有1个黄球;
④恰有1个白球与都是黄球.
其中互斥而不对立的事件共有( )
A.0组B.1组
C.2组D.3组
例2.设A与B是互斥事件,A,B的对立事件分别记为A,B,则下列说法正确的是( )
A.与互斥B.与互斥
C.D.
例3.一袋中装有5个大小形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为,则概率为的事件是( )
A.恰有一个红球B.两个小球都是白球
C.至多有一个红球D.至少有一个红球
例4.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A.B.C.D.
例5.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.至少有一个黑球与都是红球
B.至少有一个黑球与都是黑球
C.至少有一个黑球与至少有一个红球
D.恰有1个黑球与恰有2个黑球
例6.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②“当x为某一实数时,可使x2≤0”是不可能事件;③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.
其中正确命题的个数是( )
A.0B.1
C.2D.3
例7.抛掷一枚质地均匀的骰子,“向上的点数是”为事件,“向上的点数是”为事件,则下列选项正确的是( )
A.与是对立事件B.与是互斥事件
C.D.
例8.根据某医疗研究所的调查,某地区居民血型的分布为型,型,型,型.现有一血液为型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )
A.B.
C.D.
例9.把语文、数学、英语三本学习书随机地分给甲、乙、丙三位同学,每人一本,则事件A:“甲分得语文书”,事件B:“乙分得数学书”,事件C:“丙分得英语书”,则下列说法正确的是( )
A.A与B是不可能事件B.A+B+C是必然事件
C.A与B不是互斥事件D.B与C既是互斥事件也是对立事件
例10.一袋中有大小相同的4个红球和2个白球,给出下列4个结论,其中正确的有( )
A.从中任取3球,恰有一个白球的概率是
B.从中有放回的取球6次,每次任取一球,则取到红球次数的方差为
C.现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为
D.从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为
例11.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分,然后作了统计,结果如下:
贫困地区
发达地区
(1)计算两地区参加测试的儿童得60分以上的频率(保留两位小数);
(2)根据频率估计两地区参加测试的儿童得60分以上的概率.
例12.某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.规定一名运动员出线记1分,未出线记0分.假设甲、乙、丙出线的概率分别为,,,他们出线与未出线是相互独立的.
(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;
(2)记在这次选拔赛中,甲、乙、丙三名运动员的得分之和为随机变量,求随机变量的分布列.
例13.移动公司在国庆期间推出套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠元,选择套餐2的客户可获得优惠元,选择套餐3的客户可获得优惠元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.
(1)求从中任选1人获得优惠金额不低于300元的概率;
(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.
例14.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行、第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.
(1)求甲队2号队员把乙队3名队员都淘汰的概率;
(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?
例15.某射手射击一次所得环数X的分布列如下:
现该射手进行两次射击,以两次射击中最高环数作为他的成绩,记为ξ.
(1)求ξ>7的概率;
(2)求ξ的分布列.
例16.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;
②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
例17.袋中有红球和白球若干(都多于2个),从中任意取出两个小球,设恰有一个红球的概率为,没有红球的概率为,则至多有一个红球的概率为________.
例18.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是________.
例19.若随机事件、互斥,、发生的概率均不等于0,且分别为,,则实数a的取值范围为_____.
例20.下列四种说法:
①命题“,使得”的否定是“,都有”;
②“”是“直线与直线相互垂直”的必要不充分条件;
③过点(,1)且与函数图象相切的直线方程是.
④一个袋子装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中,再取出一个球,则两次取出的两个球恰好是同色的概率是.
其中正确说法的序号是_________.
参加测试的人数
30
50
100
200
500
800
得60分以上的人数
16
27
52
104
256
402
得60分以上的频率
参加测试的人数
30
50
100
200
500
800
得60分以上的人数
17
29
56
111
276
440
得60分以上的频率
0.5
0.3
0.2
0.6
0.5
0.3
0.8
0.7
0.6
X
7
8
9
10
P
0.1
0.4
0.3
0.2
相关试卷
这是一份高三数学高考高分突破之概率统计专题07 随机事件的概率(解析版)2,共10页。试卷主要包含了给出下列四个命题等内容,欢迎下载使用。
这是一份高三数学高考高分突破之概率统计专题10 条件概率(原卷版)9,共4页。试卷主要包含了已知,,则 等内容,欢迎下载使用。
这是一份高三数学高考高分突破之概率统计专题19 概率最值问题(原卷版)26,共6页。试卷主要包含了 绿水青山就是金山银山等内容,欢迎下载使用。