广东省广州市广东实验中学2024届高三上学期第二次调研数学试题(学生版)
展开本试卷共5页,满分150分,考试用时120分钟
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上.
2.选择题每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回.
第一部分选择题(共60分)
一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 设集合,则子集个数是( )
A. 1B. 2C. 3D. 4
2. 已知数列前项和为,若,则有( )
A. 为等差数列B. 为等比数列
C. 为等差数列D. 为等比数列
3. 已知,,则的终边在( )
A. 第一、二、三象限B. 第二、三、四象限
C. 第一、三、四象限D. 第一、二、四象限
4. 如图,在中,满足条件,若,则( )
A. 8B. 4C. 2D.
5. 若,z为纯虚数,且,则( )
A. B. 5C. D. 3
6. 垃圾分类是指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动,做好垃圾分类是每一位公民应尽的义务.已知某种垃圾的分解率与时间(月)近似地满足关系(其中a,b,为正常数),经过6个月,这种垃圾的分解率为,经过12个月,这种垃圾的分解率为,那么这种垃圾完全分解大约需要经过( )个月(参考数据:)
A 20B. 28C. 32D. 40
7. 已知六棱锥的所有顶点都在半径为2的球的球面上,当六棱锥的体积最大时,其侧棱长为( )
A. B. C. D.
8. 已知椭圆的左、右焦点分别为、,经过的直线交椭圆于,,的内切圆的圆心为,若,则该椭圆的离心率是( )
A B. C. D.
二.多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9. 亚洲奥林匹克理事会宣布,原定于2022年9月10日至25日举行的杭州2022年第19届亚运会于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.为了加大宣传力度,杭州某社区进行了以“中国特色、浙江风采、杭州韵味”为主题的知识竞赛,现随机抽取30名选手,其得分如图所示.设得分的中位数为,众数为,平均数为,则( )
A. B.
C. D.
10. 下列说法不正确的是( )
A. 存在,使得
B. 函数的最小正周期为
C. 函数的一个对称中心为
D. 若角的终边经过点,则角是第三象限角
11. 如图,抛物线:的焦点为,过的直线交于两点,过分别作的准线的垂线,垂足分别为,,则下列说法正确的是( )
A. 若,则直线的方程为或
B.
C. 以线段为直径的圆与轴相切
D.
12. 已知函数及其导函数的定义域为R,若,函数和均为偶函数,则( )
A. 函数是周期为5的周期函数
B. 函数的图象关于点对称
C.
D. 函数的图象关于直线对称
第二部分非选择题(共90分)
三、填空题(本大题共4小题,共20.0分)
13. 已知二项式的展开式中只有第4项的二项式系数最大,且展开式中各项的系数和为64,则正数的值为______.
14. 已知数列的首项为,,则__________.
15. 在空间直角坐标系中,定义点和点两点之间的“直角距离”.若和两点之间的距离是,则和两点之间的“直角距离”的取值范围是______.
16. 已知函数与的图象上存在关于原点对称的点,则的取值范围是__________.
四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)
17. 已知数列满足.
(1)证明数列等差数列,并求;
(2)求数列的前项和.
18. 在①;②两个条件中任选一个,补充在下面的问题中,并解答该问题.在中,内角所对的边分别是,且______.
(1)求角的大小;
(2)若点满足,且线段,求面积的最大值.
19. 如图,在四棱锥中,平面,底面为直角梯形,且为上一点.
(1)若为中点,求证:平面;
(2)若点不与和重合,且二面角的余弦值为,求与平面所成角的正切值.
20. 已知椭圆的中心为坐标原点,记的左、右焦点分别为,,上下顶点为,,且是边长为2的等边三角形.
(1)求椭圆的标准方程;
(2)若过点的直线与椭圆交于,两点,且,求直线斜率范围.
21. 已知甲、乙两支登山队均有n名队员,现有新增的4名登山爱好者将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.
(1)求三人均被分至同一队的概率;
(2)记甲,乙两队的最终人数分别为,,设随机变量,求.
22. 已知函数有3个极值点,其中是自然对数的底数.
(1)求实数的取值范围;
(2)求证:
广东省广州市执信中学2024届高三第二次调研数学试题(学生版): 这是一份广东省广州市执信中学2024届高三第二次调研数学试题(学生版),共6页。试卷主要包含了 “且”是“为第四象限角”的, 已知函数,则下列说法正确的是, 下列几种说法中正确的是等内容,欢迎下载使用。
广东省广州市华南师大附中2024届高三上学期第二次调研数学试题(学生版): 这是一份广东省广州市华南师大附中2024届高三上学期第二次调研数学试题(学生版),共6页。
广东省广州市广东实验中学2024届高三上学期第二次调研数学试题(教师版): 这是一份广东省广州市广东实验中学2024届高三上学期第二次调研数学试题(教师版),共24页。