|试卷下载
终身会员
搜索
    上传资料 赚现金
    5.3 命题、定理、证明 人教版七年级下册基础知识讲与练
    立即下载
    加入资料篮
    5.3 命题、定理、证明 人教版七年级下册基础知识讲与练01
    5.3 命题、定理、证明 人教版七年级下册基础知识讲与练02
    5.3 命题、定理、证明 人教版七年级下册基础知识讲与练03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版5.3.2 命题、定理、证明课时练习

    展开
    这是一份人教版5.3.2 命题、定理、证明课时练习,共7页。

    掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;
    掌握定理的定义,理解定理与真命题的关系,能写出一个定理的逆命题,并判断是否为真命题;
    理解并掌握证明的基本推理过程。
    【要点梳理】
    1.命题:判断一件事情的语句,叫做命题.
    特别说明:
    (1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.
    (2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”
    (3)真命题与假命题:
    真命题:题设成立结论一定成立的命题,叫做真命题.
    假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.
    2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.
    3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.
    特别说明:
    (1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.
    (2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.
    【典型例题】
    类型一、命题、定理、证明➽➼命题的判断✮✮真(假)命题
    1.下列句子中,哪些是命题?哪些不是命题?
    将27开立方.
    任意三角形的三条中线相交于一点吗?
    锐角小于直角.
    (a为实数).
    【答案】(1)不是命题;(2)不是命题;(3)是命题;(4)是命题
    【分析】根据命题的定义进行逐一判断即可.
    (1)解:将27开立方不是命题;
    (2)任意三角形的三条中线相交于一点吗?不是命题;
    (3)锐角小于直角是命题;
    (4)(a为实数)是命题.
    【点拨】本题主要考查了命题的定义, 一般地,在数学中把用语言,符号或式子表达的,可以判断真假的陈述句叫做命题.
    举一反三:
    【变式1】写出下列命题的逆命题,并判断真假.
    三角形三个内角的和等于;
    两直线平行,同旁内角互补.
    【答案】(1)内角和等于的多边形是三角形;真命题;(2)同旁内角互补,两直线平行;真命题
    【分析】(1)将命题“如果,那么”中条件与结论互换,即得一个新命题“如果,那么”,我们称这样的两个命题互为逆命题,其中一个叫做原命题,另一个就叫做原命题的逆命题.据此写出命题的逆命题,然后判断真假即可;
    (2)根据逆命题的概念,写出命题的逆命题,然后判断其真假即可.
    (1)解:命题“三角形三个内角的和等于”的逆命题为:“内角和等于的多边形是三角形”,逆命题是真命题;
    (2)解:命题“两直线平行,同旁内角互补”的逆命题是:“同旁内角互补,两直线平行”,
    逆命题是真命题.
    【点拨】此题考查了命题与判断命题的真假,熟练掌握逆命题的概念、正确找出一个命题中的题设与结论是解答此题的关键.
    类型二、命题、定理、证明➽➼命题的题设、结论✮✮逆命题✮✮互逆命题
    2.命题:一个锐角和一个钝角一定互为补角
    写出这个命题的逆命题;
    判断这个逆命题是真命题还是假命题?如果是假命题,请举一个反例.
    【答案】(1)逆命题是:“互补的两个角一定是一个锐角,一个钝角”
    假命题,反例:两个角都是直角
    【分析】(1)根据逆命题的定义,把原命题的条件与结论互换即可.(2)举出反例,即可证明命题为假命题.
    解答:(1)原命题中,条件为“一个锐角和一个钝角”,结论为“这两个角一定互为补角”,将条件与结论互换,得到逆命题,即“互补的两个角一定是一个锐角,一个钝角”.
    (2)∵互补的两个角可以都为直角,
    ∴“互补的两个角一定是一个锐角,一个钝角”是假命题.
    反例是“两个角都是直角”.
    【点拨】本题考查了逆命题,以及真假命题,熟练掌握相关定义即可得到结论.
    举一反三:
    【变式1】 已知命题“如果,那么.”
    写出此命题的条件和结论;
    写出此命题的逆命题;
    判断此命题的逆命题是真命题还是假命题,如果是假命题,请举出一个反例进行说明.
    【答案】(1)条件为:;结论为:;(2)如果,那么;(3)假命题,反例不唯一
    【分析】(1)“如果”后面的部分为条件,“那么”后面的部分为结论;
    (2)交换题目中命题的结论和题设的位置即可;
    (3)举出反例即可.
    解:(1)此命题的条件为:,结论为:;
    (2)此命题的逆命题为:如果,那么;
    (3)此命题的逆命题是假命题,
    当为相反数时,它们的绝对值相等,但本身不相等,
    如时,,而.
    【点拨】本题考查的是命题与定理,用到的知识点是真假命题的定义,正确的命题叫真命题,错误的命题叫做假命题,交换命题的中题设和结论即为原命题的逆命题.
    【变式2】写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题,若是假命题,请举出一个反例说明:
    两直线平行,同旁内角互补;
    垂直于同一条直线的两直线平行;
    相等的角是内错角;
    有一个角是60°的三角形是等边三角形.
    【答案】(1) 同旁内角互补,两直线平行,真命题
    (2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题
    (3)内错角相等,假命题;例如:∠1与∠2是内错角,但不相等
    (4)等边三角形有一个角是60°真命题
    【分析】写出各个命题的逆命题,作出判断即可.
    解答:(1)同旁内角互补,两直线平行,真命题;
    (2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;
    (3)内错角相等,假命题;例如:∠1与∠2是内错角,但不相等;
    (4)等边三角形有一个角是60°真命题.

    【点拨】本题考查命题与定理,解题的关键是掌握平行线的判定和性质,等边三角形的判定和性质,属于中考常考题型.
    类型三、命题、定理、证明➽➼命题的已知、求证、证明过程
    3.(1)已知:如图,直线AB、CD、EF被直线BF所截,,.求证:;
    (2)你在(1)的证明过程中应用了哪两个互逆的真命题.

    【答案】(1)见解析;(2)同旁内角互补,两直线平行;两直线平行,同旁内角互补.
    【分析】(1)利用同旁内角互补,两直线平行和内错角相等;两直线平行判断AB∥CD,CD∥EF,则利用平行线的传递性得到AB∥EF,然后根据平行线的性质得到结论;
    (2)利用了平行线的判定与性质定理求解.
    (1)证明:∵∠B+∠1=180°,
    ∴AB∥CD,
    ∵∠2=∠3,
    ∴CD∥EF,
    ∴AB∥EF,
    ∴∠B+∠F=180°;
    (2)解:在(1)的证明过程中应用的两个互逆的真命题为:同旁内角互补,两直线平行;两直线平行,同旁内角互补.
    【点拨】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
    举一反三:
    【变式1】 如图,有如下四个论断:①;②;③平分;④平分,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.
    【分析】根据平行线的性质和角平分线的定义即可得到结论.
    解答:已知:,,平分,
    求证:平分.
    证明:如图所示,

    ∵,
    ∴,即,
    ∵,
    ∴,
    ∵平分,
    ∴,
    ∴,
    ∴平分.
    【点拨】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.
    【变式2】求证:对顶角相等(请画出图形,写出已知、求证、证明.)
    试题分析:根据题设与结论画出符合条件的图形,根据图形写出已知、求证,然后进行证明即可.
    试题解析:已知:如图,直线AB与CD交于点O.
    求证:∠1=∠2.已知:如图,
    证明:∵AB、CD相交于O(已知),
    ∴∠1+∠3=180°,∠2+∠3=180°(邻补角的定义),
    ∴∠1=∠2(同角的补角相等).
    中考真题专练
    1.(2022·上海·中考真题)下列说法正确的是( )
    A.命题一定有逆命题B.所有的定理一定有逆定理
    C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题
    【答案】A
    【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.
    【详解】解:A、命题一定有逆命题,故此选项符合题意;
    B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;
    C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;
    D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.
    故选:A.
    【点拨】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.
    2.(2022·江苏无锡·中考真题)请写出命题“如果,那么”的逆命题:________.
    【答案】如果,那么
    【分析】根据逆命题的概念解答即可.
    解:命题“如果,那么”的逆命题是“如果,那么”,
    故答案为:如果,那么.
    【点拨】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    3.(2022·浙江湖州·中考真题)“如果,那么”的逆命题是___________.
    【答案】如果,那么
    【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.
    解:“如果,那么”的逆命题是:
    “如果,那么”,
    故答案为:如果,那么.
    【点拨】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.
    相关试卷

    初中数学5.3.1 平行线的性质随堂练习题: 这是一份初中数学<a href="/sx/tb_c88546_t7/?tag_id=28" target="_blank">5.3.1 平行线的性质随堂练习题</a>,共26页。

    数学七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明当堂达标检测题: 这是一份数学七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.2 命题、定理、证明当堂达标检测题,共9页。试卷主要包含了3 平行线的性质,下列语句中,是命题的是,下列命题中,为假命题的是,下列命题中,真命题有等内容,欢迎下载使用。

    数学5.3.2 命题、定理、证明当堂达标检测题: 这是一份数学5.3.2 命题、定理、证明当堂达标检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map