|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①
    立即下载
    加入资料篮
    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①01
    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①02
    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①03
    还剩41页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①

    展开
    这是一份湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类①,共44页。试卷主要包含了的顶点,,交y轴于点C,x+b等内容,欢迎下载使用。

    1.(2023•襄阳)在平面直角坐标系中,直线l:y=kx+b经过抛物线y=x2+2mx+2m2﹣m(m≠0)的顶点.
    (1)如图,当抛物线经过原点时,其顶点记为P.
    ①求抛物线的解析式并直接写出点P的坐标;
    ②t≤x≤t+1时,y的最小值为2,求t的值;
    ③当k=2时.动点E在直线l下方的抛物线上,过点E作EF∥x轴交直线l于点F,令S=EF,求S的最大值.
    (2)当抛物线不经过原点时,其顶点记为Q.当直线l同时经过点Q和(1)中抛物线的顶点P时,设直线l与抛物线的另一个交点为B,与y轴的交点为A.若|QB﹣QA|≥1,直接写出k的取值范围.
    2.(2023•黄石)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于两点A(﹣3,0),B(4,0),与y轴交于点C(0,4).
    (1)求此抛物线的解析式;
    (2)已知抛物线上有一点P(x0,y0),其中y0<0,若∠CAO+∠ABP=90°,求x0的值;
    (3)若点D,E分别是线段AC,AB上的动点,且AE=2CD,求CE+2BD的最小值.
    3.(2023•恩施州)在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=﹣x2+bx+c与y轴交于点A,抛物线的对称轴与x轴交于点B.
    (1)如图,若A(0,),抛物线的对称轴为x=3.求抛物线的解析式,并直接写出y≥时x的取值范围;
    (2)在(1)的条件下,若P为y轴上的点,C为x轴上方抛物线上的点,当△PBC为等边三角形时,求点P,C的坐标;
    (3)若抛物线y=﹣x2+bx+c经过点D(m,2),E(n,2),F(1,﹣1),且m<n,求正整数m,n的值.
    4.(2023•湖北)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,连接BC.
    (1)抛物线的解析式为 ;(直接写出结果)
    (2)在图1中,连接AC并延长交BD的延长线于点E,求∠CEB的度数;
    (3)如图2,若动直线l与抛物线交于M,N两点(直线l与BC不重合),连接CN,BM,直线CN与BM交于点P.当MN∥BC时,点P的横坐标是否为定值,请说明理由.
    5.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.
    (1)直接写出A,B,C三点的坐标;
    (2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;
    (3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.

    6.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
    (1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 ;
    (2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
    ①当点P为抛物线顶点时,求△PBC的面积;
    ②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
    7.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.
    (1)直接写出抛物线和直线BC的解析式;
    (2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;
    (3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.
    二.圆的综合题(共1小题)
    8.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
    (1)求证:①CD是⊙O的切线;
    ②△DEF∽△DBA;
    (2)若AB=5,DB=6,求sin∠DFE.
    三.翻折变换(折叠问题)(共1小题)
    9.(2023•恩施州)如图,在矩形ABCD中,点E是AD的中点,将矩形ABCD沿BE所在的直线折叠,C,D的对应点分别为C′,D′,连接AD′交BC′于点F.
    (1)若∠DED′=70°,求∠DAD′的度数;
    (2)连接EF,试判断四边形C′D′EF的形状,并说明理由.
    四.作图-旋转变换(共1小题)
    10.(2023•武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
    (1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;
    (2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.

    五.几何变换综合题(共1小题)
    11.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为 三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由 可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB= ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为 点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;
    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,a元/km,选取合适的P的位置,可以使总的铺设成本最低为 元.(结果用含a的式子表示)
    六.相似形综合题(共1小题)
    12.(2023•襄阳)【问题背景】
    人教版八年级下册数学教材第63页“实验与探究”问题1如下:如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1D1O的一个顶点,而且这两个正方形的边长相等,无论正方形A1B1C1D1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.想一想,这是为什么?(此问题不需要作答)
    九年级数学兴趣小组对上面的问题又进行了拓展探究、内容如下:正方形ABCD的对角线相交于点O,点P落在线段OC上,=k(k为常数).
    【特例证明】
    (1)如图1,将Rt△PEF的直角顶点P与点O重合,两直角边分别与边AB,BC相交于点M,N.
    ①填空:k= ;
    ②求证:PM=PN.(提示:借鉴解决【问题背景】的思路和方法,可直接证明△PAM≌△PBN;也可过点P分别作AB,BC的垂线构造全等三角形证明.请选择其中一种方法解答问题②.)
    【类比探究】
    (2)如图2,将图1中的△PEF沿OC方向平移,判断PM与PN的数量关系(用含k的式子表示),并说明理由.
    【拓展运用】
    (3)如图3,点N在边BC上,∠BPN=45°,延长NP交边CD于点E,若EN=kPN,求k的值.
    湖北省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类①
    参考答案与试题解析
    一.二次函数综合题(共7小题)
    1.(2023•襄阳)在平面直角坐标系中,直线l:y=kx+b经过抛物线y=x2+2mx+2m2﹣m(m≠0)的顶点.
    (1)如图,当抛物线经过原点时,其顶点记为P.
    ①求抛物线的解析式并直接写出点P的坐标;
    ②t≤x≤t+1时,y的最小值为2,求t的值;
    ③当k=2时.动点E在直线l下方的抛物线上,过点E作EF∥x轴交直线l于点F,令S=EF,求S的最大值.
    (2)当抛物线不经过原点时,其顶点记为Q.当直线l同时经过点Q和(1)中抛物线的顶点P时,设直线l与抛物线的另一个交点为B,与y轴的交点为A.若|QB﹣QA|≥1,直接写出k的取值范围.
    【答案】(1)①y=x2+x,顶点P的坐标为(﹣,﹣);
    ②t的值为﹣3或1;
    ③S的最大值为;
    (2)k≤﹣或k≥.
    【解答】解:(1)∵抛物线经过原点,
    ∴2m2﹣m=0,
    解得:m=0或,
    ∵m≠0,
    ∴m=,
    ①抛物线的解析式为y=x2+x,
    ∵y=x2+x=(x+)2﹣,
    ∴顶点P的坐标为(﹣,﹣);
    ②当t+1<﹣,即t<﹣时,y随x增大而减小,
    由题意得:(t+1)2+t+1=2,
    解得:t1=﹣3,t2=0(舍去),
    ∴t的值为﹣3,
    当﹣≤t≤﹣时,则若t≤x≤t+1时,y的最小值为﹣,不符合题意,
    当t>﹣时,y随x增大而增大,
    由题意得:t2+t=2,
    解得:t1=﹣2(舍去),t2=1,
    ∴t的值为1,
    综上所述,t的值为﹣3或1;
    ③由题意得:当k=2时,y=2x+b经过点P(﹣,﹣),
    ∴2×(﹣)+b=﹣,
    ∴b=,
    ∴y=2x+,
    设点E(m,m2+m),且﹣<m<,
    ∵EF∥x轴,
    ∴F(m2+m﹣,m2+m),
    ∴S=EF=m﹣(m2+m﹣)=﹣m2+m+=﹣(m﹣)2+,
    ∵﹣<0,﹣<m<,
    ∴当m=时,S取得最大值;
    (2)∵y=x2+2mx+2m2﹣m=(x+m)2+m2﹣m,
    ∴Q(﹣m,m2﹣m),
    ∵直线l:y=kx+b经过点P、Q,
    ∴,
    解得:,
    ∴直线l的解析式为y=(﹣m+)x﹣m,
    令x=0,得y=﹣m,
    ∴A(0,﹣m),
    联立方程得:x2+2mx+2m2﹣m=(﹣m+)x﹣m,
    解得:x1=﹣m,x2=﹣2m+,
    当x=﹣2m+时,y=(﹣m+)(﹣2m+)﹣m=2m2﹣2m+,
    ∴B(﹣2m+,2m2﹣2m+),
    当m>时,点B在第二象限,点A在y轴的负半轴上,作点A关于点Q的对称点A′,如图,
    则A′(﹣2m,2m2﹣m),QA=QA′,
    ∵|QB﹣QA|≥1,
    ∴|QB﹣QA′|≥1,
    即|A′B|2≥1,
    ∴[(﹣2m+)﹣(﹣2m)]2+[(2m2﹣2m+)﹣(2m2﹣m)]2≥1,
    化简得:m2﹣m﹣≥0,
    令m2﹣m﹣=0,
    解得:m1=﹣+(舍去),m2=+,
    ∴m≤+,
    ∵m=﹣k+,
    ∴﹣k+≤+,
    ∴k≤﹣;
    当m<时,点B在第一象限,点Q在A、B之间,作点A关于点Q的对称点A′,如图,
    则A′(﹣2m,2m2﹣m),QA=QA′,
    ∵|QB﹣QA|≥1,
    ∴|QB﹣QA′|≥1,
    即|A′B|2≥1,
    ∴[(﹣2m+)﹣(﹣2m)]2+[(2m2﹣2m+)﹣(2m2﹣m)]2≥1,
    化简得:m2﹣m﹣≥0,
    令m2﹣m﹣=0,
    解得:m1=﹣+,m2=+(舍去),
    ∴m≤﹣+,
    ∵m=﹣k+,
    ∴﹣k+≤﹣+,
    ∴k≥;
    综上所述,k的取值范围为k≤﹣或k≥.
    2.(2023•黄石)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于两点A(﹣3,0),B(4,0),与y轴交于点C(0,4).
    (1)求此抛物线的解析式;
    (2)已知抛物线上有一点P(x0,y0),其中y0<0,若∠CAO+∠ABP=90°,求x0的值;
    (3)若点D,E分别是线段AC,AB上的动点,且AE=2CD,求CE+2BD的最小值.
    【答案】(1)y=﹣x2+x+4;
    (2)﹣;
    (3).
    【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣4)=a(x2﹣x﹣12),
    即﹣12a=4,则a=﹣,
    故抛物线的表达式为:y=﹣x2+x+4①;
    (2)在Rt△AOC中,tan∠CAO==,
    ∵∠CAO+∠ABP=90°,
    则tan∠ABP=,
    故设直线BP的表达式为:y=(x﹣4)②,
    联立①②得:﹣x2+x+4=(x﹣4),
    解得:x=﹣=x0(不合题意的值已舍去);
    (3)作∠EAG=∠BCD,
    设AG=2BC=2×4=8,
    ∵AE=2CD,
    ∴△BCD∽△GAE且相似比为1:2,
    则EG=2BD,
    故当C、E、G共线时,CE+2BD=CE+EG=CG为最小,
    在△ABC中,设AC边上的高为h,
    则S△ABC=AC•h=AB×CO,
    即5h=4×7,
    解得:h=,
    则sin∠ACD===sin∠EAG,
    则tan∠EAG=7,
    过点G作GN⊥x轴于点N,
    则NG=AG•sin∠EAG=,
    即点G的纵坐标为:﹣,
    同理可得,点G的横坐标为:﹣,
    即点G(﹣,﹣),
    由点C、G的坐标得,CG==,
    即CE+2BD的最小值为.
    3.(2023•恩施州)在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=﹣x2+bx+c与y轴交于点A,抛物线的对称轴与x轴交于点B.
    (1)如图,若A(0,),抛物线的对称轴为x=3.求抛物线的解析式,并直接写出y≥时x的取值范围;
    (2)在(1)的条件下,若P为y轴上的点,C为x轴上方抛物线上的点,当△PBC为等边三角形时,求点P,C的坐标;
    (3)若抛物线y=﹣x2+bx+c经过点D(m,2),E(n,2),F(1,﹣1),且m<n,求正整数m,n的值.
    【答案】(1)抛物线解析式为y=,x的取值范围是:0≤x≤6;
    (2)C(,),P(0,)或P(0,),C(0,);
    (3)m=2,n=7或m=3,n=4.
    【解答】解:(1)∵A,抛物线的对称轴为x=3.
    ∴c=,,
    解得:b=3,
    ∴抛物线解析式为y=,
    当y=时,=,
    解得:x1=0,x2=6,
    ∴x的取值范围是:0≤x≤6;
    (2)连接AB,在对称轴上截取BD=AB,
    由已知可得:OA=,OB=3,
    在Rt△AOB中,
    tan∠OAB==,
    ∴∠OAB=60°,
    ∴∠PAB=180°﹣∠OAB=120°,
    ∵△BCP是等边三角形,
    ∴∠BCP=60°,
    ∴∠PAB+∠BCP=180°,
    ∴A、B、C、P四点共圆,
    ∴∠BAC=∠BPC=60°,
    ∵BD=AB,
    ∴△ABD是等边三角形,
    ∴∠BAD=60°,
    ∴点D在AC上,
    BD=AB=,
    ∴D(3,),
    设AD的解析式为y=kx+b,则有:

    解得:,
    ∴AC的解析式为:y=,
    由=,得:
    x1=0,x2=,
    当x=时,y=,
    ∴C(,),
    设P(0,y),则有:

    解得:y=,
    ∴P(0,);
    当C与A重合时,
    ∵∠OAB=60°,
    ∴点P与点A关于x轴对称,符合题意,
    此时,P(0,),C(0,);
    ∴C(,),P(0,)或P(0,),C(0,);
    (3)∵抛物线y=﹣x2+bx+c经过点D(m,2),E(n,2),
    ∴设抛物线解析式为y=,
    将点F(1,﹣1)代入y=中,得,
    整理得:(m﹣1)(n﹣1)=6,
    ∵m<n,且m,n为正整数,
    ∴1<m<n,
    ∴m﹣1,n﹣1为正整数,且m﹣1<n﹣1,
    ∴当m﹣1=1,n﹣1=6时,
    解得:m=2,n=7;
    当m﹣1=2,n﹣1=3时,
    解得:m=3,n=4.
    ∴m=2,n=7或m=3,n=4.
    4.(2023•湖北)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,连接BC.
    (1)抛物线的解析式为 y= ;(直接写出结果)
    (2)在图1中,连接AC并延长交BD的延长线于点E,求∠CEB的度数;
    (3)如图2,若动直线l与抛物线交于M,N两点(直线l与BC不重合),连接CN,BM,直线CN与BM交于点P.当MN∥BC时,点P的横坐标是否为定值,请说明理由.
    【答案】(1)y=.
    (2)∠CEB=45°.
    (3)3,理由见解答.
    【解答】解:(1)∵抛物线y=ax2+bx﹣6(a≠0)与x轴交于点A(﹣2,0),B(6,0),
    ∴,
    解得,
    ∴抛物线解析式为y=.
    故答案为:y=.
    (2)∵A(﹣2,0),C(0,﹣6),
    设直线AC的解析式为y=k1x+b1,
    ∴,
    解得,
    ∴直线AC的解析式为y=﹣3x﹣6,
    同理,由点D(2,﹣8),B(6,0),可得直线BD的解析式为y=2x﹣12,
    零﹣3x﹣6=2x﹣12,
    解得x=,
    ∴点E的坐标为(),
    由题意可得,OA=2,OB=OC=6,AB=8,
    ∴AC=,
    如图,过点E作EF⊥x轴于点F,
    ∴AE=,
    ∴,
    ∴,
    ∵∠BAC=∠EAB,
    ∴△ABC∽△AEB,
    ∴∠ABC=∠AEB,
    ∵OB=OC,∠COB=90°,
    ∴∠ABC=45°,
    ∵∠AEB=45°,
    ∴∠CEB=45°,
    答:∠CEB的度数为45°.
    (3)设点M的坐标为(m,),点N的坐标为(n,),
    ∵直线MN与BC不重合,
    ∴m≠0且m≠6,n≠0且n≠6,
    如图,
    由点B(6,0),点C(0,﹣6),可得直线BC的解析式为y=x﹣6,
    ∵MN∥BC,
    设直线MN的解析式为y=x+t,
    ∴x+t=,

    ∴m+n=6
    ∴点N的坐标可以表示为(6﹣m,),
    设直线CN的解析式为y=k2x+b2,
    ∴,
    解得,
    ∴直线CN的解析式为y=,
    同上,可得直线BM的解析式为y=,
    ∴=,
    ∴mx=3m,
    ∴x=3,
    ∴点P的横坐标为定值3.
    5.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.
    (1)直接写出A,B,C三点的坐标;
    (2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;
    (3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.

    【答案】(1)A(﹣2,0),B(4,0),C(0,﹣8).
    (2)t的值为2或;
    (3)点P在一条定直线y=2x﹣2上.
    【解答】解:(1)当y=0时,x2﹣2x﹣8=0,
    解得:x1=﹣2,x2=4,
    当x=0时,y=﹣8,
    ∴A(﹣2,0),B(4,0),C(0,﹣8).
    (2)∵F是直线x=t与抛物线 C1的交点,
    ∴F(t,t2﹣2t﹣8).
    ①如图,若△BE1D1∽△CE1F1时.
    则∠BCF1=∠CBO,
    ∴CF1∥OB.
    ∵C(0,﹣8),
    ∴t2﹣2t﹣8=﹣8.
    解得:t=0(舍去)或t=2.
    ②如图,若△BE2D2∽△F2E2C时.
    过 F2 作F2T⊥y轴于点T.
    ∵∠BCF2=∠BD2E2=90°,
    ∴∠CBO+∠BCO=90°,∠F2CT+∠BCO=90°,
    ∴∠F2CT=∠OBC,
    又∵∠CTF2=∠BOC,
    ∴△BCO∽△CF2T,
    ∴,
    ∵B(4,0),C(0,﹣8),
    ∴OB=4,OC=8.
    ∵F2T=t,CT=﹣8﹣(t2﹣2t﹣8)=2t﹣t2,
    ∴=,
    ∴2t2﹣3t=0,
    解得:t=0(舍去)或 ,
    综上,符合题意的t的值为2或;
    (3)点P在一条定直线上.
    由题意知抛物线C2:y=x2,
    ∵直线OG的解析式为y=2x,
    ∴G(2,4).
    ∵H是OG的中点,
    ∴H(1,2).
    设 M(m,m2),N(n,n2),直线MN的解析式为y=k1x+b1.
    则,
    解得:,
    ∴直线MN的解析式为y=(m+n)x﹣mn.
    ∵直线MN经过点H(1,2),
    ∴mn=m+n﹣2.
    同理,直线GN的解析式为y=(n+2)x﹣2n;直线MO的解析式为y=mx.
    联立,得,
    ∵直线OM与NG相交于点P,
    ∴n﹣m+2≠0.
    解得:,
    ∵mn=m+n﹣2,
    ∴P(,).
    设点P在直线y=kx+b上,则,
    整理得,2m+2n﹣4=2kn+bn﹣bm+2b=﹣bm+(2k+b)n+2b,
    比较系数,得,
    ∴k=2,b=﹣2.
    ∴当k=2,b=﹣2时,无论m,n为何值时,等式恒成立.
    ∴点P在定直线y=2x﹣2上.
    6.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.
    (1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 0或2或﹣ ;
    (2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.
    ①当点P为抛物线顶点时,求△PBC的面积;
    ②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
    【答案】(1)2或0或﹣;
    (2)①6;
    ②当m=时,S1﹣S2存在最大值,最大值为.
    【解答】解:(1)①当a﹣2=0时,即a=2时,
    y关于x的函数解析式为y=3x+,
    此时y=3x+与x轴的交点坐标为(﹣,0),
    与y轴的交点坐标为(0,);
    ②当a﹣2≠0时,y关于x的函数为二次函数,
    ∵二次函数图象抛物线与坐标轴有两个交点,
    ∴抛物线可能存在与x轴有两个交点,其中一个交点为坐标原点或与x轴有一个交点与y轴一个交点两种情况.
    当抛物线与x轴有两个交点且一个为坐标原点时,
    由题意得b=0,此时a=0,抛物线为y=﹣2x2+x.
    当y=0时,﹣2x2+x=0,
    解得x1=0,x2=.
    ∴其图象与x轴的交点坐标为(0,0)(,0).
    当抛物线与x轴有一个交点与y轴有一个交点时,
    由题意得,y=(a﹣2)x2+(a+1)x+b所对应的一元二次方程(a﹣2)x2+(a+1)x+b=0有两个相等实数根.
    ∴Δ=(a+1)2﹣4(a﹣2)×a=0,
    解得a=﹣,
    此时y=﹣x2+x﹣,
    当x=0时,y=﹣,
    ∴与y轴的交点坐标为(0,﹣),
    当y=0时,﹣x2+x﹣=0,
    解得x1=x2=,
    ∴与x轴的交点坐标为(,0),
    综上所述,若y关于x的函数y=(a﹣2)x2+(a+1)x+b的图象与坐标轴有两个交点,则a可取的值为2,0,﹣,
    故答案为:2或0或﹣;
    (2)①如图,设直线l与BC交于点F,
    根据题意得,
    解得,
    ∴抛物线的解析式为y=﹣x2+2x+8,
    当x=0时,y=8,
    ∴C(0,8),
    ∵y=﹣x2+2x+8=﹣(x﹣1)2+9,点P为抛物线顶点,
    ∴P(1,9),
    ∵B(4,0),C(0,8),
    ∴直线BC的解析式为y=﹣2x+8,
    ∴F(1,6),
    ∴PF=9﹣6=3,
    ∴△PBC的面积=OB•PF==6;
    ②S1﹣S2存在最大值,
    理由:如图,设直线x=m交x轴于H,
    由①得,OB=4,AO=2,AB=6,OC=8,AH=2+m,P(m,﹣m2+2m+8),
    ∴PH=﹣m2+2m+8,
    ∵OD∥PH,
    ∴△AOD∽△AHP,
    ∴,
    ∴,
    ∴OD=8﹣2m,
    ∵S1﹣S2=S△PAB﹣S△AOD﹣S△OBC==﹣3m2+8m=﹣3(m﹣)2+,
    ∵﹣3<0,0<m<4,
    ∴当m=时,S1﹣S2存在最大值,最大值为.
    7.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.
    (1)直接写出抛物线和直线BC的解析式;
    (2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;
    (3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.
    【答案】(1)抛物线解析式:y=﹣x2+x+2,直线BC:y=﹣x+2.
    (2)m=1或m=或m=2.
    (3)P(),Q(0, )或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).
    【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0),
    ∴抛物线的表达式为y=a(x+1)(x﹣2),
    将点C(0,2)代入得,2=﹣2a,
    ∴a=﹣1,
    ∴抛物线的表达式为y=﹣(x+1)(x﹣2),即y=﹣x2+x+2.
    设直线BC的表达式为y=kx+t,
    将B(2,0),C(0,2)代入得,

    解得,
    ∴直线BC的表达式为y=﹣x+2.
    (2)∵点M在直线BC上,且P(m,n),
    ∴点M的坐标为(m,﹣m+2),
    ∴OC=2
    ∴CM2=(m﹣0)2+(﹣m+2﹣2)2=2m2,OM2=m2+(﹣m+2)2=2m2﹣4m+4,
    当△OCM为等腰三角形时,
    ①若CM=OM,则CM2=OM2,
    即2m2=2m2﹣4m+4,
    解得m=1;
    ②若CM=OC,则CM2=OC2,
    即2m2=4,
    解得或m=﹣(舍去);
    ③若OM=OC,则OM2=OC2,
    即2m2﹣4m+4=4,
    解得m=2或m=0(舍去).
    综上,m=1或m=或m=2.
    (3)∵点P与点C相对应,
    ∴△POQ∽△CBN或△POQ∽△CNB,
    ①若点P在点B的左侧,
    则,
    当△POQ∽△CBN,即∠POQ=45°时,
    直线OP的表达式为y=x,
    ∴﹣m2+m+2=m,
    解得或m=﹣(舍去),
    ∴,即OP=2,
    ∴,即,
    解得OQ=,
    ∴,
    当△POQ∽△CNB,即∠PQO=45°时,

    ∴,即,
    解得m=1±(舍去).
    当△POQ∽△CNB,即∠PQO=45°时,
    PQ=,OQ=m﹣(﹣m2+m+2)=m2﹣2,
    ∴,即,
    解得m=,(负值舍去),
    ∴P(),Q(0.).
    ②若点P在点B的右侧,
    则∠CBN=135°,BN=m﹣2,
    当△POQ∽△CBN,即∠POQ=135°时,
    直线OP的表达式为y=﹣x,
    ∴﹣m2+m+2=﹣m,
    解得m=1+或m=1﹣(舍去),
    ∴,
    ∴,即,
    解得OQ=1,
    ∴,
    当△POQ∽△CNB,即∠PQO=135°时,
    PQ=,OQ=|﹣m2+m+2+m|=m2﹣2m﹣2,
    ∴,即,
    解得m=1+或m=1﹣(舍去),
    ∴,
    综上,P(),Q(0, )或P(),Q(0.)或P(),Q(0,1)或P(1+),Q(0,﹣2).
    二.圆的综合题(共1小题)
    8.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.
    (1)求证:①CD是⊙O的切线;
    ②△DEF∽△DBA;
    (2)若AB=5,DB=6,求sin∠DFE.
    【答案】(1)①②证明见解答过程;
    (2)sin∠DFE=.
    【解答】(1)证明:①∵四边形ABCD是菱形,
    ∴AB∥CD,
    ∵DH⊥AB,
    ∴∠CDH=∠DHA=90°,
    ∴CD⊥OD,
    ∵D为⊙O的半径的外端点,
    ∴CD是⊙O的切线;
    ②连接HF,
    ∴∠DEF=∠DHF,
    ∵DH为⊙O直径,
    ∴∠DFH=90°,
    ∴∠DHF=90°﹣∠BDH,
    ∵∠DHB=90°,
    ∴∠DBA=90°﹣∠BDH,
    ∴∠DHF=∠DBA=∠DEF,
    ∵∠EDF=∠BDA,
    ∴△DEF∽△DBA;
    (2)解:连接AC交BD于G.
    ∵菱形ABCD,BD=6,
    ∴AC⊥BD,AG=GC,DG=GB=3,
    在Rt△AGB中,AG==4,
    ∴AC=2AG=8,
    ∵S菱形ABCD=AC•BD=AB•DH,
    ∴DH==,
    由△DEF∽△DBA知:∠DFE=∠DAH,
    ∴sin∠DFE=sin∠DAH===.
    三.翻折变换(折叠问题)(共1小题)
    9.(2023•恩施州)如图,在矩形ABCD中,点E是AD的中点,将矩形ABCD沿BE所在的直线折叠,C,D的对应点分别为C′,D′,连接AD′交BC′于点F.
    (1)若∠DED′=70°,求∠DAD′的度数;
    (2)连接EF,试判断四边形C′D′EF的形状,并说明理由.
    【答案】(1)∠DAD′=35°;
    (2)四边形C′D′EF是矩形,理由见解答.
    【解答】解:(1)∵点E是AD的中点,
    ∴AE=DE,
    由翻折可知:D′E=DE,
    ∴AE=D′E,
    ∴∠EAD′=∠ED′A,
    ∵∠DED′=∠EAD′+∠ED′A=70°,
    ∴∠DAD′=35°;
    (2)四边形C′D′EF是矩形,理由如下:
    如图,连接EF,
    由翻折可知:∠EBC=∠EBG,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠EBC=∠GEB,
    ∴∠GBE=∠GEB,
    ∴GE=GB,
    ∵ED′∥BC′,
    ∴∠AFG=∠AD′E,
    ∴∠AFG=∠GAF,
    ∴GF=GA,
    ∴AE=BF,
    ∵AD=2AE=BC′,
    ∴BC′=2BF,
    ∴F是BC′的中点,
    ∴FC′=BC′,
    ∵ED′=ED=AD,
    ∴FC′=ED′,
    ∵ED′∥BC′,
    ∴四边形C′D′EF是平行四边形,
    ∵∠C′=∠C=90°,
    ∴四边形C′D′EF是矩形.
    四.作图-旋转变换(共1小题)
    10.(2023•武汉)如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.
    (1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;
    (2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD上画点H,并连接MH,使∠BHM=∠MBD.

    【答案】图形见解答.
    【解答】解:(1)如图(1),线段BF和点G即为所求;
    理由:∵BC=BA,CF=AE,∠BCF=∠BAE=90°,
    ∴△BCF≌△BAE(SAS),
    ∴∠CBF=∠ABE,
    ∴∠FBE=∠CBF+∠CBE=∠ABE+∠CBE=∠CBA=90°,
    ∴线段BE绕点B顺时针旋转90° 得BF,
    ∵PE∥FC,
    ∴∠PEQ=∠CFQ,∠EPQ=∠FCQ,
    ∵PE=FC,
    ∴△PEQ≌△CFO(ASA),
    ∴EQ=FQ,
    ∴∠GBE=EBF=45°;
    (2)如图(2)所示,点N与点H即为所求,
    理由:∵BC=BA,∠BCF=∠BAE=90°,CF=AE,
    ∴△BCF≌△BAE(SAS),
    ∴BF=BE,
    ∵DF=DE,
    ∴BF与BE 关于BD对称
    ∵BN=BM,
    ∴M,N关于BD对称,
    ∵PE/FC,
    ∴△POE∽△QOF,
    ∴,
    ∵MG∥AE
    ∴,
    ∴,
    ∵∠MEO=∠BEF,
    ∴△MEO∽△BEF,
    ∴∠EMO=∠EBF,
    ∴OM∥BF,
    ∴∠MHB=∠FBH,
    由轴对称可得∠FBH=∠EBH,
    ∴∠BHM=∠MBD.
    五.几何变换综合题(共1小题)
    11.(2023•随州)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
    (1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
    当△ABC的三个内角均小于120°时,
    如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,
    由PC=P′C,∠PCP′=60°,可知△PCP′为 等边 三角形,故PP′=PC,又P′A′=PA,故PA+PB+PC=P′A′+PB+PP′≥A′B,
    由 两点之间线段最短 可知,当B,P,P′,A′在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,
    且有∠APC=∠BPC=∠APB= 120° ;
    已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为 A 点.
    (2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;
    (3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,a元/km,选取合适的P的位置,可以使总的铺设成本最低为 元.(结果用含a的式子表示)
    【答案】(1)等边;两点之间线段最短;120°;A;
    (2)5;
    (3)a.
    【解答】解:(1)∵PC=P'C,∠PCP'=60°,
    ∴△PCP'为等边三角形,
    ∴PP'=PC,∠P'PC=∠PP'C=60°,
    又∵P'A'=PA,
    ∴PA+PB+PC=PA'+PB+PP'≥A'B,
    根据两点之间线段最短可知,当B、P、P'、A'在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    此时的P点为该三角形的“费马点”,
    ∴∠BPC+∠P'PC=180°,∠A'P'C+∠PP'C=180°,
    ∴∠BPC=120°,∠A'P'C=120°,
    ∵将△APC绕点C顺时针旋转60°得到△A′P′C,
    ∴△APC≌△A'P'C,
    ∴∠APC=∠AP'C'=120°,
    ∴∠APB=360°﹣120°﹣120°=120°,
    ∴∠APC=∠BPC=∠APB=120°,
    ∵∠BAC≥120°,
    ∴BC>AC,BC>AB,
    ∴BC+AB>AC+AB,BC+AC>AB+AC,
    ∴三个顶点中顶点A到另外两个顶点的距离和最小,
    又∵已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点,
    ∴该三角形的“费马点”为点A.
    故答案为:等边;两点之间线段最短;120°;A;
    (2)如图4,将△APC绕点C顺时针旋转60°得到△A'P'C,连接PP',
    由(1)可知当B、P、P'、A'在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
    ∵∠ACP=∠A'CP',
    ∴∠ACP+∠BCP=∠A'CP'+∠BCP=∠ACB=30°,
    又∵∠PCP'=60°,
    ∴∠BCA'=90°,
    根据旋转的性质可知:AC=A'C=3,
    ∴A'B=,
    即PA+PB+PC的最小值为5;
    (3)∵总铺设成本=PA×a+PB×a+PC×a=,
    ∴当PA+PB+PC最小时,总铺设成本最低,
    将△APC绕点C顺时针旋转90°得到△A'P'C,连接PP',A'B,
    由旋转性质可知:P'C=PC,∠PCP'=∠ACA'=90°,P'A'=PA,A'C=AC=4km,
    ∴PP'=PC,
    ∴PA+PB+PC=P'A'+PB+PP',
    当B、P、P'、A'在同一条直线上时,P'A'+PB+PP'取最小值,
    即PA+PB+PC取最小值为A'B,
    过点A'作A'H⊥BC于H,
    ∵∠ACB=60°,∠ACA'=90°,
    ∴∠A'CH=30°,
    ∴A'H=A'C=2km,
    ∴HC==(km),
    ∴BH=BC+CH=(km),
    ∴A'B===2(km),
    即PA+PB+PC的最小值为km,
    总铺设成本为:总铺设成本==a(元).
    故答案为:a.
    六.相似形综合题(共1小题)
    12.(2023•襄阳)【问题背景】
    人教版八年级下册数学教材第63页“实验与探究”问题1如下:如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1D1O的一个顶点,而且这两个正方形的边长相等,无论正方形A1B1C1D1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.想一想,这是为什么?(此问题不需要作答)
    九年级数学兴趣小组对上面的问题又进行了拓展探究、内容如下:正方形ABCD的对角线相交于点O,点P落在线段OC上,=k(k为常数).
    【特例证明】
    (1)如图1,将Rt△PEF的直角顶点P与点O重合,两直角边分别与边AB,BC相交于点M,N.
    ①填空:k= 1 ;
    ②求证:PM=PN.(提示:借鉴解决【问题背景】的思路和方法,可直接证明△PAM≌△PBN;也可过点P分别作AB,BC的垂线构造全等三角形证明.请选择其中一种方法解答问题②.)
    【类比探究】
    (2)如图2,将图1中的△PEF沿OC方向平移,判断PM与PN的数量关系(用含k的式子表示),并说明理由.
    【拓展运用】
    (3)如图3,点N在边BC上,∠BPN=45°,延长NP交边CD于点E,若EN=kPN,求k的值.
    【答案】(1)①1;
    ②证明见解答;
    (2)=k.理由见解答;
    (3)k的值为3.
    【解答】(1)①解:∵将Rt△PEF的直角顶点P与点O重合,
    ∴k===1,
    故答案为:1;
    ②证明:
    方法一:∵四边形ABCD是正方形,
    ∴∠APB=∠MPN=90°,∠PAB=∠PBC=45°,PA=PB,
    ∴∠APB﹣∠BPM=∠MPN﹣∠BPM,
    即∠APM=∠BPN,
    ∴△PAM≌△PBN(ASA),
    ∴PM=PN.
    方法二:过点P分别作PG⊥AB于G,PH⊥BC于H,如图1,
    则∠PGM=∠PHN=90°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,BD平分∠ABC,
    ∴PG=PH,∠HPG=90°,
    ∴∠MPN﹣∠GPN=∠GPH﹣∠GPN,
    即∠MPG=∠NPH,
    ∴△PMG≌△PNH(ASA),
    ∴PM=PN.
    (2)解:=k.理由如下:
    方法一:过点P作PG∥BD交BC于G,如图2(i),
    ∴∠AOB=∠APG,∠PGC=∠OBC,
    ∵四边形ABCD是正方形,
    ∴∠PAM=∠OCB=∠OBC=45°,∠AOB=90°,
    ∴∠APG=∠MPN=∠AOB=90°,∠PGC=∠PCG=∠PAM,
    ∴PG=PC,
    ∠APG﹣∠MPG=∠MPN﹣∠MPG,
    即∠APM=∠GPN,
    ∴△PAM∽△PGN,
    ∴==k.
    方法二:过点P分别作PG⊥AB于G,PH⊥BC于H,如图2(ii),
    则∠PGM=∠PGB=∠PHN=90°,
    ∵四边形ABCD是正方形,
    ∴∠BAC=∠BCA=45°,∠ABC=90°,
    ∵∠PGA=∠CHP=90°,
    ∴△APG∽△CPH,
    ∴=,
    ∵∠GPH=∠MPN=90°,
    ∴∠MPN﹣∠GPN=∠GPH﹣∠GPN,
    即∠MPG=∠NPH,
    ∴△PMG∽△PNH,
    ∴===k.
    (3)过点P作PM⊥PN交AB于M,作PH⊥BC于H,作PG⊥AB于G,如图3,
    则∠MPN=∠GPH=∠PGM=∠ECN=90°,
    ∴∠MPN﹣∠GPN=∠GPH﹣∠GPN,
    即∠MPG=∠NPH,
    ∴∠PMG=∠PNH,
    由(2)和已知条件可得:PM=kPN,EN=kPN,
    ∴PM=EN,
    ∴△PGM≌△ECN(AAS),
    ∴GM=CN,PG=EC,
    ∵∠BPN=∠PCB=45°,∠PBN=∠CBP,
    ∴△BPN∽△BCP,
    ∴=,
    ∴PB2=BC•BN,
    同理可得:PB2=BA•BM,
    ∵BC=BA,
    ∴BM=BN,
    ∴AM=CN,
    ∴AG=2CN,
    ∵∠PAB=45°,
    ∴PG=AG,
    ∴EC=2CN,
    ∴tan∠ENC===2,
    令HN=a,则PH=2a,CN=3a,EC=6a,
    ∴EN==3a,
    PN==a,
    ∴k===3.
    相关试卷

    湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类①: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类①,共15页。试卷主要包含了化简;,先化简,再求值,,其中x=﹣2,x+m2+m=0,解不等式组请按下列步骤完成解答等内容,欢迎下载使用。

    湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类②: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(基础题)知识点分类②,共15页。试卷主要包含了先化简,再求值,创建文明城市,构建美好家园,与函数为的图象交于两点等内容,欢迎下载使用。

    湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类②: 这是一份湖北省各地市2023中考数学真题分类汇编03解答题(较难题)知识点分类②,共46页。试卷主要包含了试探究,,准线方程为l,【问题呈现】等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map