湖北省各地市2023中考数学真题分类汇编02填空题(提升题)知识点分类
展开1.(2023•武汉)新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为1.36×10n的形式,则n的值是 (备注:1亿=100000000).
二.根与系数的关系(共3小题)
2.(2023•鄂州)若实数a、b分别满足a2﹣3a+2=0,b2﹣3b+2=0,且a≠b,则+= .
3.(2023•湖北)已知一元二次方程x2﹣3x+k=0的两个实数根为x1,x2,若x1x2+2x1+2x2=1,则实数k= .
4.(2023•宜昌)已知x1,x2是方程2x2﹣3x+1=0的两根,则代数式的值为 .
三.不等式的解集(共1小题)
5.(2023•黄石)若实数a使关于x的不等式组的解集为﹣1<x<4,则实数a的取值范围为 .
四.一次函数的应用(共1小题)
6.(2023•武汉)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是 .
五.反比例函数系数k的几何意义(共2小题)
7.(2023•黄石)如图,点A(a,) 和B(b,)在反比例函数y=(k>0)的图象上,其中a>b>0.过点A作AC⊥x轴于点C,则△AOC的面积为 ;若△AOB的面积为,则= .
8.(2023•湖北)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(﹣1,﹣2)和点B(2,m),则△AOB的面积为 .
六.反比例函数与一次函数的交点问题(共1小题)
9.(2023•鄂州)如图,在平面直角坐标系中,直线y1=k1x+b与双曲线y2=(其中k1•k2≠0)相交于A(﹣2,3),B(m,﹣2)两点,过点B作BP∥x轴,交y轴于点P,则△ABP的面积是 .
七.二次函数图象与系数的关系(共1小题)
10.(2023•武汉)抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.下列四个结论:
①b<0;
②4ac﹣b2<4a;
③当n=3时,若点(2,t)在该抛物线上,则t>1;
④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则.
其中正确的是 (填写序号).
八.二次函数的应用(共2小题)
11.(2023•襄阳)如图,一位篮球运动员投篮时,球从A点出手后沿抛物线行进,篮球出手后距离地面的高度y(m)与篮球距离出手点的水平距离m)之间的函数关系式是y=﹣(x﹣)2+.下列说法正确的是 (填序号).
①篮球行进过程中距离地面的最大高度为3.5m;
②篮球出手点距离地面的高度为2.25m.
12.(2023•宜昌)如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= m.
九.等边三角形的性质(共1小题)
13.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是 .
一十.勾股定理(共1小题)
14.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD= .
一十一.勾股定理的证明(共1小题)
15.(2023•湖北)如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中AF=a,DF=b,连接AE,BE,若△ADE与△BEH的面积相等,则= .
一十二.三角形的内切圆与内心(共1小题)
16.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD= .
一十三.翻折变换(折叠问题)(共3小题)
17.(2023•襄阳)如图,在△ABC中,AB=AC,点D是AC的中点,将BCD沿BD折叠得到△BED,连接AE.若DE⊥AB于点F,BC=10,则AF的长为 .
18.(2023•随州)如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为 ;DP的最大值为 .
19.(2023•宜昌)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A'EBC的周长为 .
一十四.图形的剪拼(共1小题)
20.(2023•十堰)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC(∠A=90°)硬纸片剪切成如图所示的四块(其中D,E,F分别AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为 ,最大值为 .
一十五.旋转的性质(共1小题)
21.(2023•黄石)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,AD=4,BB′=,则∠BAB′= (从“∠1,∠2,∠3”中选择一个符合要求的填空);DE= .
一十六.坐标与图形变化-旋转(共1小题)
22.(2023•湖北)如图,已知点A(3,0),点B在y轴正半轴上,将线段AB绕点A顺时针旋转120°到线段AC,若点C的坐标为(7,h),则h= .
一十七.解直角三角形(共1小题)
23.(2023•武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cs37°≈0.80,tan37°≈0.75).
一十八.解直角三角形的应用-仰角俯角问题(共1小题)
24.(2023•荆州)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为 m.(≈1.73,结果精确到0.1)
湖北省各地市2023-中考数学真题分类汇编-02填空题(提升题)知识点分类
参考答案与试题解析
一.科学记数法—表示较大的数(共1小题)
1.(2023•武汉)新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为1.36×10n的形式,则n的值是 9 (备注:1亿=100000000).
【答案】9.
【解答】解:13.6亿=1360000000=1.36×109.
故答案为:9.
二.根与系数的关系(共3小题)
2.(2023•鄂州)若实数a、b分别满足a2﹣3a+2=0,b2﹣3b+2=0,且a≠b,则+= .
【答案】.
【解答】解:∵a、b分别满足a2﹣3a+2=0,b2﹣3b+2=0,
∴可以a、b看作是一元二次方程x2﹣3x+2=0的两个实数根,
∴a+b=3,ab=2,
∴+==.
故答案为:.
3.(2023•湖北)已知一元二次方程x2﹣3x+k=0的两个实数根为x1,x2,若x1x2+2x1+2x2=1,则实数k= ﹣5 .
【答案】﹣5.
【解答】解:∵一元二次方程x2﹣3x+k=0的两个实数根为x1,x2,
∴x1+x2=3,x1•x2=k,
∵x1x2+2x1+2x2=1,
∴k+2×3=1,
解得k=﹣5,
又∵方程有两个实数根,
∴Δ=b2﹣4ac=(﹣3)2﹣4k≥0,
解得k≤,
综合以上可知实数k=﹣5.
故答案为:﹣5.
4.(2023•宜昌)已知x1,x2是方程2x2﹣3x+1=0的两根,则代数式的值为 1 .
【答案】1.
【解答】解:∵x1,x2是方程2x2﹣3x+1=0的两根,
∴x1+x2=,x1x2=,
∴==1.
故答案为:1.
三.不等式的解集(共1小题)
5.(2023•黄石)若实数a使关于x的不等式组的解集为﹣1<x<4,则实数a的取值范围为 a≤﹣1 .
【答案】a≤﹣1.
【解答】解:解不等式组,得.
∵它的解集为﹣1<x<4,
∴a≤﹣1.
故答案为:a≤﹣1.
四.一次函数的应用(共1小题)
6.(2023•武汉)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是 250 .
【答案】250.
【解答】解:由题意可知,不善行者函数解析式为s=60t+100,
善行者函数解析式为s=100t,
联立,
解得,
∴两图象交点P的纵坐标为250,
故答案为:250.
五.反比例函数系数k的几何意义(共2小题)
7.(2023•黄石)如图,点A(a,) 和B(b,)在反比例函数y=(k>0)的图象上,其中a>b>0.过点A作AC⊥x轴于点C,则△AOC的面积为 ;若△AOB的面积为,则= 2 .
【答案】,2.
【解答】解:因为点A(a,)在反比例函数y=的图象上,
则,又a>0,
解得k=5.
根据k的几何意义可知,
.
过点B作x轴的垂线,垂足为D,
则S△OBD+S梯形ACDB=S△AOC+S△AOB,
又根据k的几何意义可知,
S△OBD=S△AOC,
则S梯形ACDB=S△AOB.
又△AOB的面积为,且A(a,),B(b,),
所以,
即.
解得.
又a>b>0,
所以.
故答案为:,2.
8.(2023•湖北)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(﹣1,﹣2)和点B(2,m),则△AOB的面积为 .
【答案】.
【解答】解:∵反比例函数y=的图象经过点A(﹣1,﹣2),
∴k=(﹣1)×(﹣2)=2,
∴反比例函数解析式为y=,
∵反比例函数y=的图象经过点B(2,m),
∴m==1,
∴B(2,1),
设直线AB与x轴交于C,解析式为y=kx+b,
则,
解答,
∴直线AB的解析式为y=x﹣1,
当y=0时,x=1,
∴C(1,0)
∴△AOB的面积=×1×1+×1×2=.
故答案为:.
六.反比例函数与一次函数的交点问题(共1小题)
9.(2023•鄂州)如图,在平面直角坐标系中,直线y1=k1x+b与双曲线y2=(其中k1•k2≠0)相交于A(﹣2,3),B(m,﹣2)两点,过点B作BP∥x轴,交y轴于点P,则△ABP的面积是 .
【答案】.
【解答】解:∵直线y1=k1x+b与双曲线y2=(其中k1•k2≠0)相交于A(﹣2,3),B(m,﹣2)两点,
∴k2=﹣2×3=﹣2m
∴m=3,
∴B(3,﹣2),
∵BP∥x轴,
∴BP=3,
∴S△ABP==.
故答案为:.
七.二次函数图象与系数的关系(共1小题)
10.(2023•武汉)抛物线y=ax2+bx+c(a,b,c是常数,c<0)经过(1,1),(m,0),(n,0)三点,且n≥3.下列四个结论:
①b<0;
②4ac﹣b2<4a;
③当n=3时,若点(2,t)在该抛物线上,则t>1;
④若关于x的一元二次方程ax2+bx+c=x有两个相等的实数根,则.
其中正确的是 ②③④ (填写序号).
【答案】②③④.
【解答】解:①图象经过(1,1),c<0,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x轴的交点 都在(1,0)的左侧,
∵(n,0)中n≥3,
∴抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,
∴抛物线的开口一定向下,即a<0,
把(1,1)代入y=ax2+bx+c 得:a+b+c=1,
即b=1﹣a﹣c,
∵a<0,c<0,
∴b>0,
故①错误;
②∵a<0,b>0,c<0,,
∴方程ax2+bx+c=0的两个根的积大于0,
即mn>0,
∵n≥3,
∴m>0,
∴,
即抛物线的对称轴在直线x=1.5的右侧,
∴抛物线的顶点在点(1,1)的上方或者右上方,
∴,
∵4a<0,
∴4ac﹣b2<4a,
故②正确;
③∵m>0,
∴当 n=3 时,,
∴抛物线对称轴在直线x=1.5的右侧,
∴(1,1)到对称轴的距离大于(2,t)到对称轴的距离,
∵a<0,抛物线开口向下,
∴距离抛物线越近的函数值越大,
∴t>1,
故③正确;
④方程ax2+bx+c=x可变为ax2+(b﹣1)x+c=0,
∵方程有两个相等的实数解,
∴Δ=(b﹣1)2﹣4ac=0.
∵把(1,1)代入 y=ax2+bx+c 得a+b+c=1,即1﹣b=a+c,
∴(a+c)2﹣4ac=0,
即a2+2ac+c2﹣4ac=0,
∴(a﹣c)2=0,
∴a﹣c=0,
即a=c,
∵(m,0),(n,0)在抛物线上,
∴m,n为方程 ax2+bx+c=0 的两个根,
∴,
∴,
∵n≥3,
∴,
∴.
故④正确.
综上,正确的结论有:②③④.
故答案为:②③④.
八.二次函数的应用(共2小题)
11.(2023•襄阳)如图,一位篮球运动员投篮时,球从A点出手后沿抛物线行进,篮球出手后距离地面的高度y(m)与篮球距离出手点的水平距离m)之间的函数关系式是y=﹣(x﹣)2+.下列说法正确的是 ① (填序号).
①篮球行进过程中距离地面的最大高度为3.5m;
②篮球出手点距离地面的高度为2.25m.
【答案】①.
【解答】解:由y=﹣(x﹣)2+的顶点为(1.5,3.5),
得篮球行进过程中距离地面的最大高度为3.5m,即①正确;
由y=﹣(x﹣)2+当x=0时,y=﹣0.2×2.25+3.5=3.05,即②不正确;
故答案为:①.
12.(2023•宜昌)如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣(x﹣10)(x+4),则铅球推出的距离OA= 10 m.
【答案】10.
【解答】解:令y=0,则﹣(x﹣10)(x+4)=0,
解得:x=10或x=﹣4(不合题意,舍去),
∴A(10,0),
∴OA=10.
故答案为:10.
九.等边三角形的性质(共1小题)
13.(2023•武汉)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是 .
【答案】.
【解答】解:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∵折叠△BDE得到△FDE,
∴△BDE≌△FDE,
∴S△BDE=S△FDE,∠F=∠B=60°=∠A=∠C,
∵DE平分等边△ABC的面积,
∴图形ACED的面积=S△BDE=S△FDE,
∴S△FHG=S△ADG+S△CHE,
∵∠AGD=∠FGH,∠CHE=∠FHG,
∴△ADG∽△FHG,△CHE∽△FHG,
∴2=,
∴,
∴GH2=m2+n2,
解得GH=或GH=﹣(不合题意舍去),
故答案为:.
一十.勾股定理(共1小题)
14.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC的角平分线,则AD= 5 .
【答案】5.
【解答】解:如图,过点D作DE⊥AB于点E,
∵∠C=90°,
∴CD⊥BC,
∵BD是∠ABC的角平分线,CD⊥BC,DE⊥AB,
∴CD=DE,
在Rt△BCD和Rt△BED中,
,
∴Rt△BCD≌Rt△BED(HL),
∴BC=BE=6,
在Rt△ABC中,==10,
∴AE=AB﹣BE=10﹣6=4,
设CD=DE=x,则AD=AC﹣CD=8﹣x,
在Rt△ADE中,AE2+DE2=AD2,
∴42+x2=(8﹣x)2,
解得:x=3,
∴AD=8﹣x=5.
故答案为:5.
一十一.勾股定理的证明(共1小题)
15.(2023•湖北)如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中AF=a,DF=b,连接AE,BE,若△ADE与△BEH的面积相等,则= 3 .
【答案】3.
【解答】解:∵图中AF=a,DF=b,
∴ED=AF=a,EH=EF=DF﹣DE=b﹣a,
∵△ADE与△BEH的面积相等,
∴,
∴a2=(b﹣a)b,
∴a2=b2﹣ab,
∴1=()2﹣,
∴,
解得=(负值舍去),
∴,
故答案为:3.
一十二.三角形的内切圆与内心(共1小题)
16.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD= 35° .
【答案】35°.
【解答】解:连接OD,OE,OB,OB交ED于点G,
∵∠ACB=70°,
∴∠CAB+∠CBA=110°,
∵点O为△ABC的内切圆的圆心,
∴∠OAB+∠OBA=55°,
∴∠AOB=125°,
∵OE=OD,BD=BE,
∴OB垂直平分DE,
∴∠OGE=90°,
∴∠AFD=∠AOB﹣∠OGF=125°﹣90°=35°,
故答案为:35°.
一十三.翻折变换(折叠问题)(共3小题)
17.(2023•襄阳)如图,在△ABC中,AB=AC,点D是AC的中点,将BCD沿BD折叠得到△BED,连接AE.若DE⊥AB于点F,BC=10,则AF的长为 2 .
【答案】2.
【解答】解:取BC中点H,连接AH,过点D作DG⊥BC于点G,DM⊥BE于点M.
设EF=a,AD=CD=DE=x,则DF=x﹣a.
∵AB=AC,
∴AB=2x,∠ABC=∠ACB,BH=HC=5.
又由折叠得∠ACB=∠BED,BE=BC=10,
∴∠ABC=∠BED,
∴cs∠ABC=cs∠BED,即 =,
∴=,
解得:a=,
∴DF=x﹣a=x﹣,
∵D 是AC中点,DG⊥BC,
∴DG是△AHC的中位线,
∴CG=CH=,
∴BG=,
由折叠知∠DEM=∠DCG,ED=CD,
在△EMD和△CGD中,
,
∴△EMD≌△CGD(AAS),
∴DG=MD.
∵DE⊥AB,
∴∠EFB=90°,
∴∠DEB+∠EBF=90°.
又∵∠CAH+∠ACB=90°,且∠ACB=∠DEB,
∴∠EBF=∠CAH,
∴∠EBF+∠ABC=90°,
∴∠DMB=∠MBG=∠BGD=90°
∴四边形 MBGD是正方形,
∴DG=BG=,
∴AH=2DG=15.
在 Rt△AHC中,AH2+HC2=AC2,
∴152+52=(2x)2,
解得:x=,
∴a=,x﹣a=,即AD=,DF=,
在 Rt△AFD中,AF==2.
18.(2023•随州)如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为 10 ;DP的最大值为 2 .
【答案】10,2,
【解答】解:△CDP的面积为 ;
由题意可得△CDP的面积等于矩形ABCD的一半,∴△CDP的面积为 ;
在R△APD中,PD=,
当AP最大时,DP最大,
由题意可得点N是在以D为圆心4为半径的圆上运动,当射线CN与圆相切时,AP最大,此时C、N、M三点共线,此时点P和M重合,DP的值最大,如图;
设AP=x,则PB=5﹣x,DN=4,
∴CN=3,
在Rt△PBC中,根据勾股定理有:(5﹣x)2+42=(x+3)2,
解得x=2,
∴DP=2,
故答案为:10,2,
19.(2023•宜昌)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A处,并得到折痕DE,小宇测得长边CD=8,则四边形A'EBC的周长为 16 .
【答案】16.
【解答】解:∵四边形ABCD是平行四边形,
∴AB∥CD,∠AED=∠A′DE,
由折叠得∠ADE=∠A′ED,AD=A′D,AE=A′E,
∴∠ADE=∠AED,
∴AD=AE,
∴AD=AE=A′D=A′E,
∴AB﹣BE=CD﹣A′D,
∴A′C=BE,
∴四边形A′EBC是平行四边形,
∴四边形A'EBC的周长=2(A′C+A′E)=2(A′C+A′D)=2CD=16.
故答案为:16.
一十四.图形的剪拼(共1小题)
20.(2023•十堰)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC(∠A=90°)硬纸片剪切成如图所示的四块(其中D,E,F分别AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为 8 ,最大值为 8+2 .
【答案】8;8+2.
【解答】解:如图,
BC=4,AC=4×=2,CI=BD=CE=AC=,DI=BC=4,
∴四边形BCID周长=4+4+2=8+2;
如图,
AF=AI=IC=FC=2,
∴四边形AFCI周长为2×4=8;
故答案为:8,8+2.
一十五.旋转的性质(共1小题)
21.(2023•黄石)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,AD=4,BB′=,则∠BAB′= ∠1 (从“∠1,∠2,∠3”中选择一个符合要求的填空);DE= .
【答案】∠1;.
【解答】解:由旋转的性质得:∠BAD=∠B′AD′,
∵∠BAB′+∠B′AD=∠BAD,∠1+∠B′AD=∠B′AD′,
∴∠BAB′=∠1,
如图,连接DD',
∵四边形ABCD是平行四边形,
∴AB=CD=3,AD=BC=4,
∴CB′=BC﹣BB′=4﹣=,
由旋转得:AB′=AB=3,AD′=AD=4,
∵∠BAB′=∠1,
∴∠AD′D=∠AD′D=∠AB′B=∠B,
∴△BAB′∽△DAD′,
∴=,即=,
解得:DD′=2,
由旋转的性质得:四边形AB′C′D′是平行四边形,∠AB′C′=∠B,AB′=AB=3,∠C′=∠ECB′,B′C′=BC=4,
∴∠AD′C′=∠AB′C′=∠B,C′D′=AB′=3,
∵∠AD′D=∠B=∠AB′B,
∴∠AD′C′=∠AD′D,即点D′、D、C′在同一条直线上,
∴DC′=C′D′﹣DD′=3﹣2=1,
∵∠C′=∠ECB′,∠DEC′=∠B′EC,
∴△CEB′∽△C'ED,
∴==,
即===,
设DE=x,B′E=y,
∴==,
解得:x=,
∴DE=,
故答案为:∠1;.
一十六.坐标与图形变化-旋转(共1小题)
22.(2023•湖北)如图,已知点A(3,0),点B在y轴正半轴上,将线段AB绕点A顺时针旋转120°到线段AC,若点C的坐标为(7,h),则h= .
【答案】.
【解答】解:方法一:在x轴上取点D和点E,使得∠ADB=∠AEC=120°,过点C作CF⊥x轴于点F,
∵点C的坐标为(7,h),
∴OF=7,CF=h,
在Rt△CEF中,∠CEF=180°﹣∠AEC=60°,CF=h,,,∠BAC=120°,∠BAD+∠CAE=∠BAD+∠ABD=180°﹣120°=60°,
∴∠CAE=∠ABD,
∵AB=CA,
∴△CAE≌△ABD(AAS),
∴,AE=BD,
∵点A(3,0),
∴OA=3,
∴
在Rt△BOD中,∠BDO=180°﹣∠ADB=60°,BD=,
∴,
∵OA+AE+EF=OF,
∴,
解得 ,
方法二:将△AOB绕点A顺时针旋转120度,得到三角形ACD,延长DC交x轴于点E,在直角三角形ADE中,∠DAE=60°,则AE=2AD=2OA=6,过点C作CF⊥x轴于点F,
则CF=h,AF=7﹣3=4,
所以EF=6﹣4=2,
在直角三角形CEF中h=EF•tan30°=
.故答案为:.
一十七.解直角三角形(共1小题)
23.(2023•武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是 2.7 cm(结果精确到0.1cm,参考数据sin37°≈0.60,cs37°≈0.80,tan37°≈0.75).
【答案】2.7cm.
【解答】解:如图,过点B作BD⊥OA于D,过点C作CE⊥OA于E,
在△BOD中,∠BDO=90°,∠DOB=45°,
∴CE=BD=2cm,
在△OCE中,∠COE=37°,∠CEO=90°,
∴tan37°=,
∴OE=2.7cm,
即OC与尺上沿的交点C在尺上的读数是2.7cm.
故答案为:2.7cm.
一十八.解直角三角形的应用-仰角俯角问题(共1小题)
24.(2023•荆州)如图,无人机在空中A处测得某校旗杆顶部B的仰角为30°,底部C的俯角为60°,无人机与旗杆的水平距离AD为6m,则该校的旗杆高约为 13.8 m.(≈1.73,结果精确到0.1)
【答案】13.8.
【解答】解:由题意可得:tan30°=,
解得:BD=2(米),
tan60°=,
解得:DC=6(米),
故该校的旗杆高约为:BC=BD+DC=8≈13.8(米),
故答案为:13.8.
湖北省各地市2023中考数学真题分类汇编01选择题(提升题)知识点分类: 这是一份湖北省各地市2023中考数学真题分类汇编01选择题(提升题)知识点分类,共41页。
湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类①: 这是一份湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类①,共13页。试卷主要包含了2=0,则= ,计算,0的结果是 ,0﹣2cs60°= ,+1= 等内容,欢迎下载使用。
湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类②: 这是一份湖北省各地市2023中考数学真题分类汇编02填空题(基础题)知识点分类②,共18页。试卷主要包含了×2= 等内容,欢迎下载使用。