贵州省毕节市织金县2023-2024学年八年级上学期期末数学试题(无答案)
展开同学你好!答题前请认真阅读以下内容:
1. 全卷共4页,三个大题,25个小题,满分150分.考试时间为120分钟,考试形式闭卷.
2. 一律在答题卡相应位置作答,在试卷上作答视为无效.
3. 不能使用计算器.
一、选择题(以下每题有A、B、C、D四个选项,只有一个选项正确,请将正确的选项填写在答题卷相应的位置上,每小题3分,共36分)
1. 的平方根是( )
A. 5B. -5C. D.
2. 点关于y轴对称的点的坐标为( )
A. B. C. D.
3. 以下列各组数中的三个数据为边长构建三角形,能组成直角三角形的一组是( )
A. ,,B. 12,16,20C. 4,6,8D. 7,14,15
4. 下列各数:0.101001……,,,,,中,无理数有( )个
A. 1B. 2C. 3D. 4
5. 如图,下列条件不能判断直线的是( )
(第5题图)
A. B. C. D.
6. 已知,那么的值为( )
A. 1B. -1C. D.
7. 已知点和点是一次函数图象上的两点,则a与b的大小关系是( )
A. B. C. D. 以上都不对
8. 如图是中国象棋的一盘残局,如果用表示“帅”的位置,用表示“将”的位置,那么“炮”的位置应表示为( )
(第8题图)
A. B. C. D.
9. 用加减法解方程组,下列解法错误的是( )
A. ①×3-②×2,消去xB. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去xD. ①×2-②×(-3),消去y
10. 在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的( )
A. 平均数B. 中位数C. 众数D. 方差
11. 如图,把直线向上平移后得到直线AB,直线AB经过点,且,则直线AB的解析式是( )
(第11题图)
A. B. C. D.
12. 如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要( )
(第12题图)
A. 150a元B. 225a元C. 300a元D. 450a元
二、填空题(请将正确的答案填写在答题卡相应的位置上,每小题4分,共16分)
13. 在中,,,,则AB的长为______.
14. 若最简二次根式与可以合并,则m的值可以为______.
15. 已知与是同类项,则______.
16. 已知关于x的方程的解为,则一次函数与x轴交点的坐标为______.
三、解答题(请将必要的解答过程及图形填写在答题卷相应的位置上,共9个小题,共98分)
17.(每小题4分,共8分)计算下列各题:
(1)(2)
18.(8分)解方程组:.
19.(10分)已知一个正数的两个平方根分别是和,的算术平方根为2,c是的整数部分.
(1)求a、b、c的值.(6分)
(2)求的立方根.(4分)
20.(10分)如图所示,已知等腰的底边,D是腰AB上一点,且,,求的面积.
(第20题图)
21.(12分)已知一次函数的图象经过点和点,且点B在正比例函数的图象上.
(1)求a的值和一次函数的解析式;(8分)
(2)若,是这个一次函数图象上的两点,试比较与的大小.(4分)
22.(12分)某校举办“社会主义核心价值观”知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图所示,且甲、乙两人预赛四项成绩的平均分相同.
(1)表中m的值为______;
(2)把图中的统计图补充完整;
(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.
23.(12分)大美织金风景秀丽,物产丰富.一外地游客到织金某特产专卖店,准备购买精加工的豆腐乳和织金腊肉两种盒装特产.若购买3盒豆腐乳和2盒织金腊肉共需405元,购买1盒豆腐乳和3盒织金腊肉共需485元.
(1)请分别求出每盒豆腐乳和每盒织金腊肉的价格;
(2)该游客购买了4盒豆腐乳和2盒织金腊肉,共需多少元?
24.(12分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(第24题图)
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射.若被b反射出的光线n与光线m平行,且,则______,______;
(2)在(1)中,若,则______;若,则______;
(3)由(1)、(2)请你猜想:当两平面镜a,b的夹角______时,可以使任何射到平面镜a上的光线m,经过平面镜a,b的两次反射后,入射光线m与反射光线n平行,请说明理由.
25.(14分)织金某水果点计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?
项目
甲
乙
演讲内容
95
m
语言表达
90
85
形象风度
85
m
现场效果
90
95
进价(元/千克)
售价(元/千克)
甲种
5
8
乙种
9
13
2023-2024学年贵州省毕节市织金县数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年贵州省毕节市织金县数学九上期末学业质量监测模拟试题含答案,共7页。
贵州省毕节市织金县2023-2024学年八年级上学期1月期末数学试题: 这是一份贵州省毕节市织金县2023-2024学年八年级上学期1月期末数学试题,共4页。
贵州省毕节市大方县黄泥塘镇中学2023-2024学年八年级上学期期中数学试题(无答案): 这是一份贵州省毕节市大方县黄泥塘镇中学2023-2024学年八年级上学期期中数学试题(无答案),共5页。试卷主要包含了如图,直线y=ax+b过点A等内容,欢迎下载使用。