|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    立即下载
    加入资料篮
    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类01
    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类02
    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

    展开
    这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。

    1.(2022•河南)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.
    (1)求反比例函数的表达式.
    (2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)
    (3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.
    二.反比例函数的应用(共1小题)
    2.(2023•河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点 和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作,连接BF.
    ​(1)求k的值;
    (2)求扇形AOC的半径及圆心角的度数;
    (3)请直接写出图中阴影部分面积之和.
    三.二次函数综合题(共1小题)
    3.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
    (1)求m和b的值;
    (2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
    (3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.
    四.三角形综合题(共1小题)
    4.(2021•河南)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.
    任务:
    (1)小明得出Rt△PGO≌Rt△PHO的依据是 (填序号).
    ①SSS②SAS③AAS④ASA⑤HL
    (2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.
    (3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.
    五.四边形综合题(共2小题)
    5.(2022•河南)综合与实践
    综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
    (1)操作判断
    操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
    操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
    根据以上操作,当点M在EF上时,写出图1中一个30°的角: .
    (2)迁移探究
    小华将矩形纸片换成正方形纸片,继续探究,过程如下:
    将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
    ①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;
    ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
    (3)拓展应用
    在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.
    6.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
    (1)观察发现
    如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1 关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为 ;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为 个单位长度.
    (2)探究迁移
    如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:
    ①若∠PAP2=β,请判断β与α的数量关系,并说明理由;
    ②若AD=m,求P,P3两点间的距离.
    (3)拓展应用
    在(2)的条件下,若α=60°,,∠PAB=15°,连接P2P3,当P2P3与▱ABCD的边平行时,请直接写出AP的长.

    六.切线的性质(共1小题)
    7.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.
    小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.
    请仅就图2的情形解答下列问题.
    (1)求证:∠PAO=2∠PBO;
    (2)若⨀O的半径为5,AP=,求BP的长.
    七.作图—基本作图(共1小题)
    8.(2023•河南)如图,△ABC 中,点D在边AC上,且AD=AB.
    (1)请用无刻度的直尺和圆规作出∠A的平分线(保留作图痕迹,不写作法);
    (2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE=BE.

    八.解直角三角形的应用(共1小题)
    9.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).

    九.解直角三角形的应用-仰角俯角问题(共2小题)
    10.(2022•河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cs34°≈0.83,tan34°≈0.67).
    11.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cs37.5°≈0.79,tan37.5°≈0.77).
    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类
    参考答案与试题解析
    一.待定系数法求反比例函数解析式(共1小题)
    1.(2022•河南)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A的下方,AC平分∠OAB,交x轴于点C.
    (1)求反比例函数的表达式.
    (2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)
    (3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.
    【答案】(1)y=;
    (2)作图见解析部分;
    (3)证明见解析部分.
    【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),
    ∴k=2×4=8,
    ∴反比例函数的解析式为y=;
    (2)解:如图,直线m即为所求.
    (3)证明:∵AC平分∠OAB,
    ∴∠OAC=∠BAC,
    ∵直线m垂直平分线段AC,
    ∴DA=DC,
    ∴∠OAC=∠DCA,
    ∴∠DCA=∠BAC,
    ∴CD∥AB.
    二.反比例函数的应用(共1小题)
    2.(2023•河南)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点 和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作,连接BF.
    ​(1)求k的值;
    (2)求扇形AOC的半径及圆心角的度数;
    (3)请直接写出图中阴影部分面积之和.
    【答案】(1)k=;
    (2)2;60°;
    (3)3﹣.
    【解答】解:(1)将A(,1)代入到y=中,
    得:1=,
    解得:k=;
    (2)过点A作OD 的垂线,交x轴于G,
    ∵A(,1),
    ∴AG=1,OG=,
    OA==2,
    ∴半径为2;
    ∵AG=OA,
    ∴∠AOG=30°,
    由菱形的性质可知,∠AOG=∠COG=60°,
    ∴∠AOC=60°,
    ∴圆心角的度数为:60°;
    (3)∵OD=2OG=2,
    ∴S菱形AOCD=AG×OD=2,
    ∴S扇形AOC=×π×r2=,
    在菱形OBEF中,S△FHO=S△BHO,
    ∵S△FHO==,
    ∴S△FBO=2×=,
    ∴S阴影=S△FBO+S菱形AOCD﹣S扇形AOC=+2﹣π=3﹣.
    三.二次函数综合题(共1小题)
    3.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
    (1)求m和b的值;
    (2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
    (3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.
    【答案】(1)m=﹣2,b=2;
    (2)B(﹣1,3),不等式 x2+mx>﹣x+b 的解集为x<﹣1或x>2;
    (3)﹣1≤xM<2 或 xM=3.
    【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,
    将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;
    故m=﹣2,b=2;
    (2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,
    联立上述两个函数表达式并解得或(不符合题意,舍去),
    即点B的坐标为(﹣1,3),
    从图象看,不等式 x2+mx>﹣x+b 的解集为x<﹣1或x>2;
    (3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,
    ∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤xM<2;
    当点M在点B的左侧时,线段MN与抛物线没有公共点;
    当点M在点A的右侧时,当 xM=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即xM=3时,线段MN与抛物线只有一个公共点,
    综上所述,﹣1≤xM<2 或 xM=3.
    四.三角形综合题(共1小题)
    4.(2021•河南)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.
    任务:
    (1)小明得出Rt△PGO≌Rt△PHO的依据是 ⑤ (填序号).
    ①SSS②SAS③AAS④ASA⑤HL
    (2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.
    (3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE=30°时,直接写出线段OC的长.
    【答案】(1)⑤;
    (2)射线OP是∠AOB的平分线,理由见解答;
    (3)2或2+.
    【解答】解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,
    ∴∠PGO=∠PHO=90°,
    ∵OE﹣OC=OF﹣OD,
    ∴CE=DF,
    ∵CG=CE,DH=DF,
    ∴CG=DH,
    ∴OC+CG=OD+DH,
    ∴OG=OH,
    ∵OP=OP,
    ∴Rt△PGO≌Rt△PHO(HL),
    故答案为:⑤.
    (2)射线OP是∠AOB的平分线,理由如下:
    如图2,∵OC=OD,∠DOE=∠COF,OE=OF,
    ∴△DOE≌△COF(SAS),
    ∴∠PEC=∠PFD,
    ∵∠CPE=∠DPF,CE=DF,
    ∴△CPE≌△DPF(AAS),
    ∴PE=PF,
    ∵OE=OF,∠PEO=∠PFO,PE=PF,
    ∴△OPE≌△OPF(SAS),
    ∴∠POE=∠POF,即∠POA=∠POB,
    ∴射线OP是∠AOB的平分线.
    (3)如图3,OC<OE,连接OP,作PM⊥OA,则∠PMO=∠PME=90°,
    由(2)得,OP平分∠AOB,∠PEC=∠PFD,
    ∴∠PEC+30°=∠PFD+30°,
    ∵∠AOB=60°,
    ∴∠POE=∠POF=∠AOB=30°,
    ∵∠CPE=30°,
    ∴∠OCP=∠PEC+∠CPE=∠PEC+30°,∠OPC=∠PFD+∠POF=∠PFD+30°,
    ∴∠OCP=∠OPC=(180°﹣∠POE)=×(180°﹣30°)=75°,
    ∴OC=OP,∠OPE=75°+30°=105°,
    ∴∠OPM=90°﹣30°=60°,
    ∴∠MPE=105°﹣60°=45°,
    ∴∠MEP=90°﹣45°=45°,
    ∴MP=ME,
    设MP=ME=m,则OM=MP•tan60°=m,
    由OE=+1,得m+m=+1,解得m=1,
    ∴MP=ME=1,
    ∴OP=2MP=2,
    ∴OC=OP=2;
    如图4,OC>OE,连接OP,作PM⊥OA,则∠PMO=∠PMC=90°,
    同理可得,∠POE=∠POF=∠AOB=30°,∠OEP=∠OPE=75°,∠OPM=60°,∠MPC=∠MCP=45°,
    ∴OE=OP=+1,
    ∵MC=MP=OP=OE=,
    ∴OM=MP•tan60°=×=,
    ∴OC=OM+MC=+=2+.
    综上所述,OC的长为2或2+.
    五.四边形综合题(共2小题)
    5.(2022•河南)综合与实践
    综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
    (1)操作判断
    操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
    操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
    根据以上操作,当点M在EF上时,写出图1中一个30°的角: ∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可) .
    (2)迁移探究
    小华将矩形纸片换成正方形纸片,继续探究,过程如下:
    将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
    ①如图2,当点M在EF上时,∠MBQ= 15 °,∠CBQ= 15 °;
    ②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
    (3)拓展应用
    在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.
    【答案】(1)∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);
    (2)①15,15;②∠MBQ=∠CBQ,理由见解析过程;
    (3)cm或cm.
    【解答】解:(1)∵对折矩形纸片ABCD,
    ∴AE=BE=AB,∠AEF=∠BEF=90°,
    ∵沿BP折叠,使点A落在矩形内部点M处,
    ∴AB=BM,∠ABP=∠PBM,
    ∵sin∠BME==,
    ∴∠EMB=30°,
    ∴∠ABM=60°,
    ∴∠CBM=∠ABP=∠PBM=30°,
    故答案为:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);
    (2)①由(1)可知∠CBM=30°,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠BAD=∠C=90°,
    由折叠可得:AB=BM,∠BAD=∠BMP=90°,
    ∴∠BM=BC,∠BMQ=∠C=90°,
    又∵BQ=BQ,
    ∴Rt△BCQ≌Rt△BMQ(HL),
    ∴∠CBQ=∠MBQ=15°,
    故答案为:15,15;
    ②∠MBQ=∠CBQ,理由如下:
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠BAD=∠C=90°,
    由折叠可得:AB=BM,∠BAD=∠BMP=90°,
    ∴BM=BC,∠BMQ=∠C=90°,
    又∵BQ=BQ,
    ∴Rt△BCQ≌Rt△BMQ(HL),
    ∴∠CBQ=∠MBQ;
    (3)由折叠的性质可得DF=CF=4cm,AP=PM,
    ∵Rt△BCQ≌Rt△BMQ,
    ∴CQ=MQ,
    当点Q在线段CF上时,∵FQ=1cm,
    ∴MQ=CQ=3cm,DQ=5cm,
    ∵PQ2=PD2+DQ2,
    ∴(AP+3)2=(8﹣AP)2+25,
    ∴AP=,
    当点Q在线段DF上时,∵FQ=1cm,
    ∴MQ=CQ=5cm,DQ=3cm,
    ∵PQ2=PD2+DQ2,
    ∴(AP+5)2=(8﹣AP)2+9,
    ∴AP=,
    综上所述:AP的长为cm或cm.
    6.(2023•河南)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.
    (1)观察发现
    如图1,在平面直角坐标系中,过点M(4,0)的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1 关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为 180° ;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为 8 个单位长度.
    (2)探究迁移
    如图2,▱ABCD中,∠BAD=α(0°<α<90°),P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:
    ①若∠PAP2=β,请判断β与α的数量关系,并说明理由;
    ②若AD=m,求P,P3两点间的距离.
    (3)拓展应用
    在(2)的条件下,若α=60°,,∠PAB=15°,连接P2P3,当P2P3与▱ABCD的边平行时,请直接写出AP的长.

    【答案】(1)8;
    (2)①β=2α;
    ②2m•sinα;
    (3)AP=3﹣或2.
    【解答】解:(1)答案为:8;
    (2)①如图1,
    β=2α,理由如下:
    连接AP1,
    由轴对称的性质可得:∠PAB=∠BAP1,∠P1AD=∠DAP2,
    ∴∠PAB+∠DAP2=∠BAP1+∠DAP1=∠BAD=α,
    ∴β=2α;
    ②如图2,
    作DF⊥AB于F,作P1E⊥DF于E,
    ∵PP1⊥AB,P3P1⊥CD,
    可得矩形EFGP1和矩形DEP1H,
    ∴DE=HP1,EF=GP1,
    ∵DF=AD•sinA=m•sinα,
    ∴GP1+HP1=DE+EF=DF=m•sinα,
    ∵HP3=HP1,PG=P1G,
    ∴HP3+PG=GP1+HP1=m•sinα,
    ∴PP3=2m•sinα;
    (3)如图3,
    在Rt△KMN中,∠M=90°,∠N=15°,KS=SN,则∠KSM=30°,
    设KM=1,则SN=KS=2,MS=,则KN=,
    ∴sin15°=,
    当P2P3∥AD时,作DI⊥AB于I,设P1P2交AD于T,
    ∵P1P2⊥AD,
    ∴P2P3⊥P1P2,
    ∴∠P3P2P1=90°,
    ∵PP3∥DI,
    ∴∠P2P3P1=∠ADI=30°,
    由(2)知:PP3=2AD•sin60°=6,
    设AP1=AP=x,则PP1=2AP•sin∠PAB=2x•sin15°=2x•=,
    ∴P1P3=PP3﹣PP1=6﹣,
    ∵∠BAP1=∠BAP=15°,
    ∵∠P1AT=∠DAB﹣∠BAP1=60°﹣15°=45°,
    由轴对称性质得:∠ATP1=90°,
    ∴TP1=AP1=,
    ∴P1P2=,
    由P1P2=P1P3•sin∠P2P3P1=P1P3•sin30°得,
    6﹣=2x,
    ∴x=3,
    如图5,
    当P2P3∥CD时,设AP=x,
    同理可得:P1P2=2P1P3,
    ∴2[6﹣]=x,
    ∴x=2,
    综上所述:AP=3﹣或2.
    六.切线的性质(共1小题)
    7.(2021•河南)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.
    小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⨀O上,当点P在⨀O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⨀O相切时,点B恰好落在⨀O上,如图2.
    请仅就图2的情形解答下列问题.
    (1)求证:∠PAO=2∠PBO;
    (2)若⨀O的半径为5,AP=,求BP的长.
    【答案】(1)见解析;
    (2)3.
    【解答】(1)证明:如图①,
    连接OP,延长BO与圆交于点C,则OP=OB=OC,
    ∵AP与⨀O相切于点P,
    ∴∠APO=90°,
    ∴∠PAO+∠AOP=90°,
    ∵MO⊥CN,
    ∴∠AOP+∠POC=90°,
    ∴∠PAO=∠POC,
    ∵OP=OB,
    ∴∠OPB=∠PBO,
    ∴∠POC=∠OPB+∠PBO=2∠PBO,
    ∴∠PAO=2∠PBO;
    (2)解:如图②所示,
    连接OP,延长BO与圆交于点C,连接PC,过点P作PD⊥OC于点D,
    则有:AO==,
    由(1)可知∠POC=∠PAO,
    ∴Rt△POD∽Rt△OAP,
    ∴,即,解得PD=3,OD=4,
    ∴CD=OC﹣OD=1,
    在Rt△PDC中,PC==,
    ∵CB为圆的直径,
    ∴∠BPC=90°,
    ∴BP===3,
    故BP长为3.
    七.作图—基本作图(共1小题)
    8.(2023•河南)如图,△ABC 中,点D在边AC上,且AD=AB.
    (1)请用无刻度的直尺和圆规作出∠A的平分线(保留作图痕迹,不写作法);
    (2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE=BE.

    【答案】(1)见解答;
    (2)见解答.
    【解答】(1)解:如图所示,即为所求,
    (2)证明:∵AE平分∠BAC,
    ∴∠BAE=∠DAE,
    ∵AB=AD,AE=AE,
    ∴△BAE≌△DAE(SAS),
    ∴DE=BE.
    八.解直角三角形的应用(共1小题)
    9.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF=11m,BH=20cm.求树EG的高度(结果精确到0.1m).

    【答案】9.1m.
    【解答】解:由题意可知,∠BAE=∠MAF=∠BAD=90°,FG=1.8m,
    则∠EAF+∠BAF=∠BAF+∠BAH=90°,
    ∴∠EAF=∠BAH,
    ∵AB=30cm,BH=20cm,
    则tan∠EAF==,
    ∴tan∠EAF==tan∠BAH=,
    ∵AF=11m,
    则,
    ∴EF=,
    ∴EG=EF+FG=1.8≈9.1m.
    答:树EG的高度为9.1m.
    九.解直角三角形的应用-仰角俯角问题(共2小题)
    10.(2022•河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cs34°≈0.83,tan34°≈0.67).
    【答案】拂云阁DC的高度约为32米.
    【解答】解:延长EF交DC于点H,
    由题意得:
    ∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,
    设FH=x米,
    ∴EH=EF+FH=(15+x)米,
    在Rt△DFH中,∠DFH=45°,
    ∴DH=FH•tan45°=x(米),
    在Rt△DHE中,∠DEH=34°,
    ∴tan34°==≈0.67,
    ∴x≈30.5,
    经检验:x≈30.5是原方程的根,
    ∴DC=DH+CH=30.5+1.5≈32(米),
    ∴拂云阁DC的高度约为32米.
    11.(2021•河南)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cs37.5°≈0.79,tan37.5°≈0.77).
    【答案】见试题解答内容
    【解答】解:根据题意可知:∠DAB=45°,
    ∴BD=AD,
    在Rt△ADC中,DC=BD﹣BC=(AD﹣4)m,∠DAC=37.5°,
    ∵tan∠DAC=,
    ∴tan37.5°=≈0.77,
    解得AD≈17.4m,
    ∴BD=AD≈17.4m,
    答:佛像的高度约为17.4 m.
    小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.
    简述理由如下:
    由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.
    小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.
    ……
    小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.
    简述理由如下:
    由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.
    小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.
    ……
    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共25页。试卷主要包含了之间的关系如图所示,问题提出等内容,欢迎下载使用。

    青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共28页。试卷主要包含了两点,与y轴交于点C,综合与实践等内容,欢迎下载使用。

    河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案): 这是一份河南省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案),共27页。试卷主要包含了和点B,综合与实践等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map